Graphs are Everywhere!

Illya V. Hicks
Computational and Applied Mathematics
Rice University

Summer Math Days
Rice University
June 2, 2015
Me and Mathematics

Senior Student Council members Harold Jackson and Alan Shipp discuss plans for a project after a Student Council meeting.

Senior Illya Hicks, a member of the offensive line and an Academic All-American, sits back and relaxes during calculus.
My Story
I Love Texas
I also still love football!
I. Basic Definitions

II. Different Graph Applications

III. Dominating Sets, TSP, Clique & k-plexes

IV. Conclusions
Graphs (Networks)

Graph $G=(V, E)$

- Vertex set V is finite
- Edges $E = \{uv : u, v \in V\}$
- Undirected (for this talk)
- u is a neighbor of w if $uw \in E$

clique

neighbors of v

stable set
I Can Tell You My Secret Now?

I see graphs everywhere!
Network (Graph)
Applications

- vertices represent actors: people, places, companies
- edges represent ties or relationships
- Applications
 - Criminal network analysis
 - Data mining
 - Wireless Networks
 - Genes Therapy
 - Biological Neural Networks
Van Gogh Graph

Provided by Don Johnson, Rice
Gene Co-expression Networks

vertices represent genes
edges represent high correlation between genes
(Carlson et al. 2006)
Biological Neural Networks

vertices represent neurons
(Berry and Temman 2005)
Social Network Pop Quiz
9-11 Terrorist Network

1) Alshehri
2) Sugami
3) Al-Marabh
4) Hijazi
5) W. Alshehri
6) A. Alghamdi
7) M. Alshehri
8) S. Alghamdi
9) Ahmed
10) Al-Hisawi
11) Al-Omari
12) H. Alghamdi
13) Alnami
14) Al-Haznawi
15) Darkazanli
16) Abdi
17) Al-Shehhi
18) Essabar
19) S. Alhazmi
20) N. Alhazmi
21) Bahaji
22) Jarrah
23) Atta
24) Shaikh
25) El Motassadeq
26) Al-Mihdhar
27) Moussaoui
28) Al-Shibh
29) Raissi
30) Hanjour
31) Awadallah
32) Budiman
33) Al-ani
34) Moqed
35) Abdullah
36) Al Salmi
37) Alhazmi
Do You Like Bacon?
Dominating Set
Dominating Set
Minimum Dominating Set

- A **dominating set** D is a subset of vertices in a graph G such that every vertex of G is either a member of D or is adjacent to a member of D.

- Applications
 - Sensor Networks
 - Marketing
 - Ad-hoc mobile networks (robots, cell phones)
 - Ship warehouse design
Health Logistics

Amber Kunkel, Elizabeth Van Itallie, Duo Wu
Mission Impossible: Rogue Nation

IMF instructions to Ethan Hunt:

- Starting from home base, visit cities \(\{c_2, c_3, \ldots, c_n\} \) to do covert operations and come back to home base.
- You can not visit any city twice!
- Since the agency is under budget cuts, you must complete your mission with lowest possible travel distance.
An Example
Complexity of the Mission

- In general, there are \((n-1)!/2\) possible solutions.

- Suppose you could evaluate a possible solution in one nanosecond \((10^{-9} \text{ seconds})\). If the number of cities were 23, then it would take you 178 centuries to look at all possible solutions.
The Traveling Salesman Problem

Given a finite number of “cities” along with the cost of travel between each pair of them. Find the cheapest way to visit all the “cities” and return to your starting point.

<table>
<thead>
<tr>
<th>Cities</th>
<th>Who?</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>Dantzig, Fulkerson, and Johnson</td>
<td>1954</td>
</tr>
<tr>
<td>60</td>
<td>Held and Karp</td>
<td>1970</td>
</tr>
<tr>
<td>532</td>
<td>Padberg and Rinaldi</td>
<td>1987</td>
</tr>
<tr>
<td>2392</td>
<td>Padberg and Rinaldi</td>
<td>1988</td>
</tr>
<tr>
<td>7397</td>
<td>Applegate, Bixby, Chvatal, and Cook</td>
<td>1994</td>
</tr>
<tr>
<td>13,509</td>
<td>Applegate, Bixby, Chvatal, and Cook</td>
<td>1998</td>
</tr>
</tbody>
</table>
World TSP

Keld Helsgaun’s Tour: 7,515,790,354 LP Bound: 7,512,218,268 Gap: 0.0476%
Mona Lisa

$1,000 for shorter tour

100,000 Cities, Robert Bosch, February 2009

Yuichi Nagata’s Tour: 5,757,191 LP Bound: 5,757,046 Gap: 0.0025%
A graph is a **clique** if every vertex is adjacent to the rest of vertices.
Cliques
Maximum Clique

• A **clique** is a subset of nodes such that there is an edge between any two nodes in the set.

• two nodes can’t be in a clique together if they are not adjacent

• Applications
 • Bioinformatics
 • Social networks
 • Online auctions
Homer Ignoring Lisa
Homer ignoring Lisa (en español)
The Simpsons Social Network

[Diagram showing characters from The Simpsons in a network structure]
What is cohesiveness in terms of graphs?

- Debated by social scientists
- Three general properties
 - Familiarity (few strangers)
 - Members can easily reach each other (quick communication)
 - Robustness (not easily destroyed by removing members)
Is this graph cohesive?

Clique is too restrictive!
Different versions of cohesiveness

- Relax distance requirement between members
 - k-clique (Luce 1950)
 - k-club (Alba 1973)

- Relax the familiarity (# of neighbors) between members
 - k-plex (Siedman & Foster 1978)
 - k-core (Siedman 1983)
k-plexes

- Given a graph $G=(V, E)$ and some integer $k > 0$, a set $S \subseteq V$ is called a **k-plex** if every node of S has at most $k-1$ non-neighbors in S

- Cliques are 1-plexes

- NP-hard to find maximum k-plex, $\omega_k(G)$, in a graph G
1-plexes are cliques
2-plexes

at most 1 non-neighbor
9-11 Terrorist Network

1) Alshehri
2) Sugami
3) Al-Marabh
4) Hijazi
5) W. Alshehri
6) A. Alghamdi
7) M. Alshehri
8) S. Alghamdi
9) Ahmed
10) Al-Hisawi
11) Al-Omari
12) H. Alghamdi
13) Alnami
14) Al-Haznawi
15) Darkazanli
16) Abdi
17) Al-Shehhi
18) Essabar
19) S. Alhazmi

20) N. Alhazmi
21) Bahaji
22) Jarrah
23) Atta
24) Shaikh
25) El Motassadeq
26) Al-Mihdhar
27) Moussaoui
28) Al-Shibh
29) Raissi
30) Hanjour
31) Awadallah
32) Budiman
33) Al-ani
34) Moqed
35) Abdullah
36) Al Salmi
37) Alhazmi
Ready for Co-k-plexes!!!
Another Example: Retail Location

Stable set
Starbucks in Springfield
Another Example: Retail Location
k-plexes and co-k-plexes
My Research: Combinatorial Optimization

• How can we find the largest k-plex in a graph?

• Two ways I attack problems
 • Combinatorial (graph) algorithms
 • Polyhedral Combinatorics
Graph Coloring

$\omega(G) \leq \chi(G)$
Co-k-plex Coloring

$\omega_k(G) \leq \chi_k(G)$
Linear and Integer Programming

max $3x_1 + 2x_2$

$-x_1 + 2x_2 \leq 4$

$5x_1 + 1x_2 \leq 20$

$-2x_1 - 2x_2 \leq -7$

$x_1, x_2 \geq 0$

x integer

facet
Wrap-Up

- Graph Definitions
- Applications
- Dominating Sets, TSP, Cliques & k-plexes
Polyhedral Approach

• Let $N[v]$ denote the closed neighborhood of vertex v
• Let $d(v)$ denote $|V \setminus N[v]|$

\[
\begin{align*}
\text{Max} \sum_{v \in V} x_v \\
\text{st.} \sum_{u \in V \setminus N[v]} x_u & \leq (k - 1)x_v + d(v)(1 - x_v) \quad \forall v \in V \\
x_v & \in \{0, 1\} \quad \forall v \in V
\end{align*}
\]
Polyhedral Approach
Acknowledgments

• My collaborator: Ben McClosky, Ph. D.

• NSF
 • DMI 0521209
 • DMS 0611723
 • CMMI 0926618
Any Questions?
Relevant Literature

- Seidman & Foster (1978)
 - Introduced k-plexes in context of social network analysis

- Balasundaram, Butenko, Hicks, and Sachdeva (2006)
 - IP formulation for maximum k-plex problem
 - NP-complete complexity result

- McClosky & Hicks (2007)
 - Co-2-plex polytope

- McClosky & Hicks (2008)
 - Graph algorithm to compute k-plexes
Co-\(k\)-plexes

- Given a graph \(G = (V, E)\), a set \(S \subseteq V\) is called a co-\(k\)-plex if \(\Delta(G[S]) \leq k - 1\), where \(\Delta\) denotes maximum degree.

- Stable sets are co-1-plexes and co-\(k\)-plexes form independence systems.

- NP-hard to find maximum co-\(k\)-plex, \(\alpha_k(G)\) in a graph \(G\).

- Co-2-plexes correspond to vertex induced subgraphs of isolated nodes and matched pairs.
Co-k-plex Polytope

- Given graph G, let \mathcal{J}^k be the set of co-k-plexes in G
- For all $S \in \mathcal{J}^k$, let x^S be the incidence vector for S.
- Define $P_k(G) = \text{conv}(\{x^S : S \in \mathcal{J}^k\})$
- $P_2(G)$ shares many properties with $P_1(G)$
Co-2-plex analogs

- Padberg (1973)
 - Clique and odd hole inequalities
- Trotter (1975)
 - Web inequalities
- Minty (1980)
 - claw-free graphs
2-plex Inequalities

- Theorem (Padberg): If K is a maximal clique in G, then $\sum_{v \in K} x_v \leq 1$ is a facet for $P_1(G)$.

- Theorem (M & H, B et al.): If K is a maximal 2-plex in G such that $|K| > 2$, then $\sum_{v \in K} x_v \leq 2$ is a facet for $P_2(G)$.
Odd-mod Hole Inequalities

- **Theorem (Padberg):** If C is an n-chordless cycle such that $n > 3$ is odd, then $\sum_{v \in V(C)} x_v \leq \lfloor n/2 \rfloor$ is a facet for $P_1(C)$.

- **Theorem (M & H):** If C is an n-chordless cycle such that $n > 2$ and $n \neq 0 \mod 3$, then $\sum_{v \in V(C)} x_v \leq \lfloor 2n/3 \rfloor$ is a facet for $P_2(C)$.
Webs

- For fixed integers $n \geq 1$ and p such that $1 \leq p \leq \lfloor n/2 \rfloor$, the web $W(n, p)$ has n vertices and edges $E = \{(i, j): j = i + p, \ldots, i + n - p; \forall \text{ vertices } i\}$
Theorem (Trotter): If \(\gcd(n, p) = 1 \), then
\[
\sum_{v \in V(W(n,p))} x_v \leq p
\]
is a facet for \(P_1(W(n, p)) \).

Theorem (M & H): If \(\gcd(n, p + 1) = 1 \), then
\[
\sum_{v \in V(W(n,p))} x_v \leq p + 1
\]
is a facet for \(P_2(W(n, p)) \).
Given an integer $k \geq 1$, the graph G is a k-claw if there exists a vertex v of G such that $V(G) = \mathcal{N}[v]$, $\mathcal{N}(v)$ is a co-k-plex, and $|\mathcal{N}(v)| \geq \max\{3, k\}$.
2-claw free graphs

- **Theorem (B & H):** A graph G is 2-claw free if and only if $\Delta(G) \leq 2$ or G is 2-plex.

- This theorem will be used to describe a class of 0-1 matrices A for which the polytope $P=\{x \in \mathbb{R}^n_+: Ax \leq 2, x \leq 1\}$ is integral.
A clutter is a pair \((V, E)\) where \(V\) is a finite set and \(E\) is a family of subsets of \(V\) none of which is included in another.
Clutters of Maximal 2-plexes

- Given a graph G, let C be the clutter whose vertices are $V(G)$ and whose edges are maximal 2-plexes of G.

![Graph G](image1)

![Clutter C](image2)
Let A be the edge-vertex incidence matrix of C.

- **Theorem (M & H):** Let A be the 2-plex clutter matrix of G. The polytope $P = \{ x \in \mathbb{R}^n_+: Ax \leq 2, x \leq 1 \}$ is integral if and only if the components of G are 2-plexes, co-2-plexes, paths, or 0 mod 3 chordless cycles.

- **Corollary (M & H):** Given a 2-plex clutter matrix A, there is a polynomial-time algorithm to determine if $P = \{ x \in \mathbb{R}^n_+: Ax \leq 2, x \leq 1 \}$ is integral.
Future Work

- Combinatorial algorithm to compute maximum k-plexes (involves k-plex coloring)
- Find facets of $P_k(G)$ for $k > 2$.
- Can k-plex clutter matrices give insight in polyhedra defined as $P=\{x \in \mathbb{R}^n_+: Ax \leq k, x \leq 1\}$?
Other inequalities

• **Stable Sets**
 - \(\sum_{v \in I} x_v \leq k \ \forall \text{stable sets } I \ \text{s.t. } |I| \geq k+1 \)

• **Holes**
 - \(\sum_{v \in H} x_v \leq k + 1 \ \forall \text{holes } H \ \text{s.t. } |H| \geq k+3 \)

• **Co-k-plexes**
 - \(\sum_{v \in S} x_v \leq \omega_k(S) \ \forall \text{co-k-plexes } S \)
2-plex Computational Results

<table>
<thead>
<tr>
<th>G</th>
<th>n</th>
<th>m</th>
<th>density</th>
<th>(\omega(G))</th>
<th>BIS</th>
<th>UB</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.200.1</td>
<td>200</td>
<td>1534</td>
<td>0.077</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>57.3</td>
</tr>
<tr>
<td>c.200.2</td>
<td>200</td>
<td>3235</td>
<td>0.163</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>46.9</td>
</tr>
<tr>
<td>c.200.5</td>
<td>200</td>
<td>8473</td>
<td>0.426</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>40.2</td>
</tr>
<tr>
<td>h.6.2</td>
<td>64</td>
<td>1824</td>
<td>0.905</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>.47</td>
</tr>
<tr>
<td>h.6.4</td>
<td>64</td>
<td>704</td>
<td>0.349</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>4.4</td>
</tr>
<tr>
<td>h.8.2</td>
<td>256</td>
<td>31616</td>
<td>0.969</td>
<td>128</td>
<td>128</td>
<td>130</td>
<td>>86000</td>
</tr>
<tr>
<td>h.8.4</td>
<td>256</td>
<td>20864</td>
<td>0.639</td>
<td>16</td>
<td>16</td>
<td>46</td>
<td>>86000</td>
</tr>
<tr>
<td>j.8.2.4</td>
<td>28</td>
<td>210</td>
<td>0.556</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3.6</td>
</tr>
<tr>
<td>j.8.4.4</td>
<td>70</td>
<td>1855</td>
<td>0.768</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>7424</td>
</tr>
<tr>
<td>j.16.2.4</td>
<td>120</td>
<td>5460</td>
<td>0.765</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>>86000</td>
</tr>
<tr>
<td>k.4</td>
<td>171</td>
<td>9435</td>
<td>0.649</td>
<td>11</td>
<td>15</td>
<td>26</td>
<td>>86000</td>
</tr>
<tr>
<td>m.a9</td>
<td>45</td>
<td>918</td>
<td>0.927</td>
<td>16</td>
<td>26</td>
<td>26</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Who was the first African-American to receive a PhD in Mathematics?
Elbert F. Cox

Dissertation: Polynomial Solutions of Difference Equations
Ph.D. Cornell University, 1925
Advisor: William Lloyd Garrison
Who was the first African-American to receive a PhD in Mathematics at Rice University?
Raymond Johnson

Dissertation: A Priori Estimates and Unique Continuation Theorems for Second Order Parabolic Equations
Ph.D. Rice University, 1969
Advisor: Jim Douglass Jr.