RUSMP/MLI Colloquium

Tropical Mathematics

An Interesting and Useful Variant of Ordinary Arithmetic

June 8, 2005
Tropical Mathematics

A new mathematics

- Starts with a new arithmetic
- Includes polynomials, curves, higher algebra
- Useful in combinatorics, algebraic geometry
- Useful in genetics
- It is fun to do math in a different setting
Why Tropical Mathematics?

- Coined by French mathematicians
- In honor of Imre Simon, a Brazilian mathematician
- The name simply reflects how a few Frenchmen view Brazil
Tropical Arithmetic

- Ordinary arithmetic
 - Real numbers, addition ($+$) and multiplication (\times)

- Tropical arithmetic
 - Real numbers plus infinity, denoted by ∞
 - Tropical addition (\oplus)
 - Tropical multiplication (\otimes)
Tropical Addition

\(a \oplus b = \text{the minimum of } a \text{ and } b. \)

- **Examples:**

 \[
 3 \oplus 5 = 3, \quad 3 \oplus (-5) = -5 \\
 12 \oplus 0 = 0, \quad 0 \oplus (-3) = -3
 \]

- **The additive unit is \(\infty \).**

 \[
 \infty \oplus 3 = 3 \\
 \infty \oplus x = x \oplus \infty = x \text{ for all } x
 \]
Tropical Addition Table

<table>
<thead>
<tr>
<th>⊕</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Differences

- Subtraction is not always possible.
 - The equation $3 \oplus x = 5$ has no solution.
 - The equation $3 \oplus x = 1$ has a solution.
 - The equation $a \oplus x = \infty$ has no solution if $a \neq \infty$.
- We have to stay away from looking for solutions to equations.
Tropical Multiplication

- \(a \otimes b = a + b \)

 Tropical multiplication is the same as ordinary addition.

- Examples:

 \[3 \otimes 5 = 8, \quad 3 \otimes (-5) = -2, \]

 \[(-1) \otimes 3 = 2, \quad 1 \otimes 13 = 14. \]

- The multiplicative unit is 0.

 \[0 \otimes 13 = 13. \]

 \[0 \otimes x = x \otimes 0 = x \text{ for all } x. \]
Tropical Multiplication Table

<table>
<thead>
<tr>
<th>⊗</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
Similarities and Differences

- Commutative laws are valid
- The distributive law still holds.
- \((x \oplus y)^3 = x^3 \oplus y^3\)
Linear Functions

\[y = 5 \]

\[y = 3 \otimes x \]

\[y = 3 \otimes x \oplus 5 \]
Linear Functions

- The graph of $y = 5$ is a straight line with slope 0.
- The graph of $y = 3 \otimes x$ is a straight line with slope 1.
- The graph of $y = 3 \otimes x \oplus 5$ is a crooked line.
- Notice:

 \[
 3 \otimes x \oplus 5 = \min\{x + 3, 5\}
 \]
 \[
 = 3 + \min\{x, 2\}
 \]
 \[
 = 3 \otimes (x \oplus 2)
 \]

 $x = 2$ is where the graph bends.
Monomials

• Monomials:

\[x^2 = x \otimes x = x + x = 2x \]
\[x^3 = x \otimes x \otimes x = 3x \]
\[x^p = p \times x \]

♦ Monomials are linear functions with integer coefficients.

• \(3 \otimes x^2 = 3 + (2x) \)

♦ The graph is a line with slope 2.

• \(4 \otimes x^3 = 3x + 4 \)

♦ The graph is a line with slope 3.

• The exponent is the slope of the graph.
Polynomials

Example 1:

\[p(x) = 2 \otimes x^2 \oplus x \oplus 5 \]

\[= \min\{2x + 2, x, 5\} \]

- The graph is a twice bent line.
 - The graph bends at \(x = -2 \) and \(x = 5 \).
- We can show that \(p(x) = 2 \otimes [x \oplus (-2)] \otimes [x \oplus 5] \)
Example 2:

\[p(x) = x^2 \oplus 3 \otimes x \oplus 2 \]

\[= \min\{2x, x + 3, 2\} \]

- The graph is a once bent line.
 - The graph bends at \(x = 1 \)
- We can show that \(p(x) = (x \oplus 1)^2 \)
Factorization of Polynomials

- Our two example polynomials factor into linear factors.
 - The factors have the form $x \oplus a$, where a is a bend point for the graph.
- Any tropical polynomial can be expressed in one and only one way as the product of linear factors.
 - Thus the Fundamental Theorem of Algebra remains true in tropical mathematics.
 - The factors are of the form $x \oplus a$, where a is a bend point for the graphs of the function. All such factors occur.
Polynomials in Two Variables

• A monomial represents a linear function.
 ♦ Example: \(p(x, y) = 3 \otimes x \otimes y = 3 + x + y \)

• A polynomial represents the minimum of one or more linear functions.
 ♦ Example: \(p(x, y) = x \oplus y \oplus 1 = \min\{x, y, 1\} \)

• The bend points of the graph occur where two or more of the linear functions agree.
Curves

• In ordinary math, the zero set of $x^2 + y^2 - 1$ is a circle — a curve.

• In tropical math, the zero set is replaced with the bend set — a tropical curve.

• Examples

 ♦ 1. $p(x, y) = x \oplus y \oplus 1 = \min\{x, y, 1\}$

 ♦ 2. $p(x, y) = x^2 \oplus y^2 \oplus 4 = \min\{2x, 2y, 4\}$

 ♦ 3. $p(x, y) = x^2 \oplus y^2 \oplus x \oplus 4 = \min\{2x, 2y, x, 4\}$
The End
$y = 2 \otimes x^2$

$p(x) = 2 \otimes x^2 \oplus x \oplus 5$

$y = x$

$y = 5$
\[
\begin{align*}
\text{y} &= \text{x}^2 \\
\text{y} &= 2 \\
p(x) &= \text{x}^2 \oplus 3 \otimes \text{x} \oplus 2 \\
y &= 3 \otimes \text{x}
\end{align*}
\]
p(x,y) = x \oplus y \oplus 1
\[p(x,y) = x^2 \oplus y^2 \oplus 4 \]

\[x^2 \ (= 2x) \]

\[y^2 \ (= 2y) \]
\[p(x, y) = x^2 \oplus y^2 \oplus x \oplus 4 \]

- \(x^2 \) (\(= 2x\))
- \(y^2 \) (\(= 2y\))