Classroom Practices of High School Math Teachers: A Longitudinal Analysis

Yasemin Copur-Gencturk
Anne Papakonstantinou
Richard Parr
Effective instruction critical for promoting students’ conceptual understanding

Standards-based teaching distributed inequitably across school contexts

• Teachers in schools that mainly serve low-income or minority students more often relying on rote instructional methods
Key Features of High-Quality PD

<table>
<thead>
<tr>
<th>Content and pedagogical content focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active learning experience</td>
</tr>
<tr>
<td>Connections to teacher work</td>
</tr>
<tr>
<td>Program duration</td>
</tr>
</tbody>
</table>

Introduction

Program Description

Data Collection

Results

Discussion
Limited research on the sustainability of the effects of PD

Most studies based on teachers’ self-reported data

Limited focus on changes in various aspects of mathematics instruction
Funded by the NSF MSP program-Grant no: 0412072

Partnership between Rice University and two urban school districts that mainly serve low-income students or students of color

Designed to provide PD, support, and leadership experiences for high school teachers

79 teachers in 3 cohorts
Program Details

Summer institutes
- 4-week long for two consecutive summers
- Mathematics focus: algebra and geometry during the 1st summer & combinatorics and statistics during the 2nd summer

Academic year activities
- Monthly meetings
- Individualized support through site visits and electronic communication
49 high-school mathematics teachers from Cohorts I & II

All teachers certified

36 held master’s degrees

Years of experience ranged from 1 to 49 years (mean = 14.1; median = 12)
Students used a variety of means to represent concepts (e.g., models, drawings, graphs, manipulatives).

Students discussed and explained their understandings of each question with a partner or within a small group. Teacher used probing questions to deepen students' mathematical understanding. Teacher provided explicit expectations for group activity and product(s). Students were actively engaged in thought-provoking activities that often involved the critical assessment of procedures. Teacher's questions triggered divergent modes of thinking among students.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Reliability Estimate</th>
<th># of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Interactions</td>
<td>.87</td>
<td>5</td>
</tr>
<tr>
<td>Mathematical Discourse</td>
<td>.75</td>
<td>4</td>
</tr>
<tr>
<td>Instructional Clarity</td>
<td>.81</td>
<td>3</td>
</tr>
<tr>
<td>Mathematical Habit of Mind</td>
<td>.79</td>
<td>6</td>
</tr>
<tr>
<td>Hands-on Materials</td>
<td>.74</td>
<td>4</td>
</tr>
</tbody>
</table>
Results

-0.10 0.10 0.30 0.50 0.70 0.90 1.10 1.30

Effect Size

<table>
<thead>
<tr>
<th>Time (semester in the program)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Interactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Discourse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructional Clarity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introduction

Program Description

Data Collection

Results

Discussion
Results Cont.

-0.50
-0.30
-0.10
0.10
0.30
0.50
0.70
0.90
0
1
2
3
4
5
6
7

Effect Size

Time (semester in the program)

Mathematical Habit of Mind
Hands-on Materials Experienced
Hands-on Materials New
Discussion

- Mathematical Discourse
 - Convenient sample

- Mathematical Habit of Mind

- Instructional Clarity

- Student Interactions

- Hands-on Materials

Limitations

- Number of observations
Thanks!

Questions?