

Mathematical Literacy Assessment Design: A Dimensionality Analysis of Programme for International Student Assessment (PISA) Mathematics Framework

Adem Ekmekci Rice University

Ph.D. from The University of Texas at Austin August 5th, 2013

- Programme for International Student Assessment
- Assesses 15-year-olders' knowledge and competencies in *mathematics, science,* and *reading*
- OECD Organisation for Economic Cooperation and Development
- Every 3 years starting in the year 2000 with reading as the main domain

PISA Math Framework

Content - Quantity Change & Relationship ty connection Reflection ---- Uncertainty Process (Competency Clusters) Personal Educational / Occupational **Public Scientific Context** (Situations)

The Purpose

- To investigate the extent to which the multidimensional nature of PISA's mathematical literacy (ML) is reflected on the actual items.
- To investigate the extent to which the unidimensionality assumption is reflected on the actual items.
- To monitor the stability of these correspondence between PISA ML framework and the actual items over the three implementation cycles: 2003, 2006, 2009.

Conceptual Framework

Participants

- About 200K students from 30 OECD countries for each of 2003, 2006, and 2009 cycles.
- Simple random sampling: **17,000 respondents**
- Student weights to ensure accurate representation of PISA population.

Instrument

Dimensions →	Content (84 – 48 – 35)	Process (84 – 48 – 35)	Context (84 – 48 – 35)	
	Quantity (22 – 13 – 11)	Reproduction $(26 - 11 - 9)$	Personal (18 – 9 – 4)	
Sub-dimensions →	Space and Shape $(20 - 11 - 8)$	Connection (39 – 24 – 18)	Educational / Occupational (20 – 8 – 5)	
	Change and Relationship (22 – 13 – 9)	Reflection (19 – 13 – 8)	Public (28 – 18 – 13)	
	Uncertainty		Scientific	
	(20 - 11 - 7)		(18 - 13 - 13)	

 Confirmatory Factor Analytic (CFA) methods were employed.

Models:

- One unidimensional model
- Three 1-level models (Content, Process, Context)
- Three 2-level models (Content, Process, Context)

Models (cont.)

11

- What is the correspondence between the dimensional structure of the PISA mathematics items and PISA's ML framework in terms of the content, process, and context dimensions?
- What is the best representation for the dimensional structure of the PISA mathematics items for implementation cycles 2003, 2006, and 2009?
- How does the dimensional structure of the PISA mathematics items change over time?

Model Fit - 2003

	Model 1:	Model 2:	Model 3:	Model 4:	Model 5:	Model 6:	Model 7:
	1F-GML	4F-Content	3F-Process	4F-Context	L2-Content	L2-Process	L2-Context
Chi-Square Test of Model Fit							
Value	3898.008	3859.488	3892.262	3890.017	3862.815	3894.486	3890.814
Degrees of freedom	3402	3396	3399	3396	3398	3401	3398
<i>p</i> -value	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CFI/TLI							
CFI	0.973	0.975	0.973	0.973	0.975	0.973	0.973
TLI	0.972	0.974	0.972	0.972	0.974	0.972	0.972
RMSEA (Root Mean Square							
Error of Approximation)							
Estimate	0.003	0.002	0.002	0.002	0.002	0.002	0.002
90 Percent C.I.	0.002-0.003	0.002-0.003	0.002-0.003	0.002-0.003	0.002-0.003	0.002-0.003	0.002-0.003
Probability RMSEA <= .05	1.000	1.000	1.000	1.000	1.000	1.000	1.000
WRMR (Weighted Root							
Mean Square Residual)	1.163	1.148	1.162	1.161	1.149	1.162	1.161

Item loadings					L-1	
Models	Low (<0.400)	High (>0.800)	Items with low R-square (<0.250)	Correlations b/w L-1 factors	loadings onto L-2	
Model 1: 1F-GML	M75, M82, M83	M28, M45, M48, M80	M20, M24, M36, M40, M41, M57, M65, M66, M68, M75, M82, M83, M84	N/A	N/A	
Model 2: 1-L Content	M75, M82, M83	M07, M27, M28, M45, M48, M63, M80	M20, M24, M36, M40, M41, M57, M65, M66, M68, M75 M82, M83	>0.905	N/A	
Model 3: 1-L Process	M75, M82, M83	M28, M45, M48, M80	M20, M24, M36, M40, M41, M57, M65, M66, M68, M75, M82, M83, M84	>0.966	N/A	
Model 4: 1-L Context	M75, M82, M83	M15, M28, M45, M48, M80	M20, M24, M36, M40, M41, M57, M65, M66, M68, M75, M82, M83, M84	>0.939	N/A	
Model 5: 2-L Content	M75, M82, M83	M07, M27, M28, M45, M48, M63, M80	M20, M24, M36, M40, M41, M57, M65, M66, M68, M75 M82, M83	N/A	>0.914	
Model 6: 2-L Process	M75, M82, M83	M28, M45, M48, M80	M20, M24, M36, M40, M41, M57, M65, M66, M68, M75, M82, M83, M84	N/A	>0.968	
Model 7: 2-L Context	M75, M82, M83	M15, M28, M45, M48, M80	M20, M24, M36, M40, M41, M57, M65, M66, M68, M75, M82, M83, M84	N/A	>0.967	

Content 2-Level > 1-Level > 1F-GML

Process 1F-GML > 2-Level > 1-Level

Context 1F-GML > 2-Level > 1-Level

2006 & 2009 Results

- Only slight changes in the model fit indices
- Slight changes in the individual item parameters
- Evidence for multidimensionality and unidimensionality
- Stability across cycles

Conclusions

- There is evidence for both unidimensionality and multidimensionality
- Stronger evidence for unidimensionality
- Multidimensional nature of ML as described in the theoretical framework is not well-reflected in the mathematics items
- Weak connection between the cognition and interpretation components of PISA assessment design (NRC, 2001)

Conclusions (cont.)

- Multidimensional representation seems to be reflected better for content
- Multidimensional representation is not well reflected for the process and context dimensions
- Again, evidence for both unidimensionality and multidimensionality
- Consistency in individual item parameters across different models – all constructs could be behaving as one unifying construct.

Conclusions (cont.)

Stability across cycles in both

- Model-fits and model comparisons
- Individual parameter estimates

Discussion

- One of the most robust tools to assess dimensionality
- Well-developed and respected assessment design
- Somewhat ambiguous results
- Strict vs. Essential unidimensionality (Stout, 1990; Tate, 2002)
- Need qualitative analysis of interesting items (not released)

Discussion (cont.)

- New psychometric models that allows assessing ML in a multidimensional way
- New ML frameworks that would incorporate other aspects of ML as documented in the literature such as social and democratic perspectives.

THANK YOU

VERY MUCH!!!