

Using Coffee Stirrers to Develop Reasoning about Geometric Shapes and their Attributes

Rice University School Mathematics Project Houston, Texas

http://rusmp.rice.edu

Susan Troutman troutman@rice.edu Director of Secondary Programs Carolyn L White clwhite@rice.edu
Director of Elementary Programs

NCTM Standards

All students in grades 3-5 should be able to:

- identify, compare, and analyze attributes of two-and threedimensional shapes
- develop vocabulary to describe the attributes
- classify two- and three-dimensional shapes according to their properties
- develop definitions of classes of shapes such as triangles and pyramids
- make and test conjectures about geometric properties and relationships
- develop logical arguments to justify conclusions

Gavin, M. K., Belkin, L. P., Spinelli, A. M., & St. Marie, J. (2001). *Navigating through geometry in grades 3-5*. Reston, VA: NCTM.

van Hiele Levels

Level 0 Visual level

Students judge shapes by the way they look.

Level 1 Descriptive level

Students identify shapes according to properties.

Level 2 Informal Deduction level

Students are able to see the interrelationships between figures.

van Hiele Levels

Level 3 Formal Deduction level-Proofs

Students give reasons for steps in a proof. At this level, students are able to work with abstract statements about geometric properties and make conclusions based more on logic than intuition.

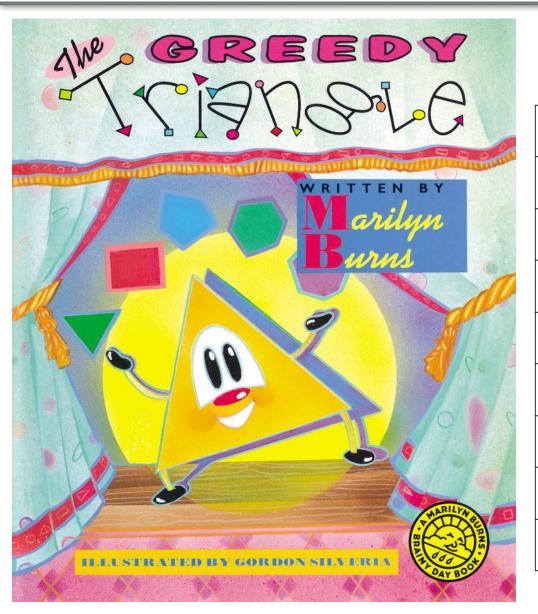
Level 4 Rigor

Students supply reasons for contradictions for a proof and rigorously compare different axiomatic systems.

^{*}Mayberry, J. (1983). The van Hiele levels of geometric thought in undergraduate preservice teachers. *Journal of Research in Mathematics Education*, *14*(1), 58-69.

Geometric Terms

Types of Angles


- Right
- Acute
- Obtuse
- Straight
- Reflex

Types of Lines

- Parallel
- Intersecting
- Perpendicular

The Greedy Triangle

Shapes in The Greedy Triangle

Name of Shape	Number of Sides	Number of Angles	Number of Vertices	Real-world Examples

Exploring Polygons

Let's explore polygon concepts

- What is a polygon?
- Polygon Vocabulary
 - Regular
 - Sides vs Edges

Types of Triangles

Based on Side Lengths

- Equilateral
- Isosceles
- Scalene

Based on Angles

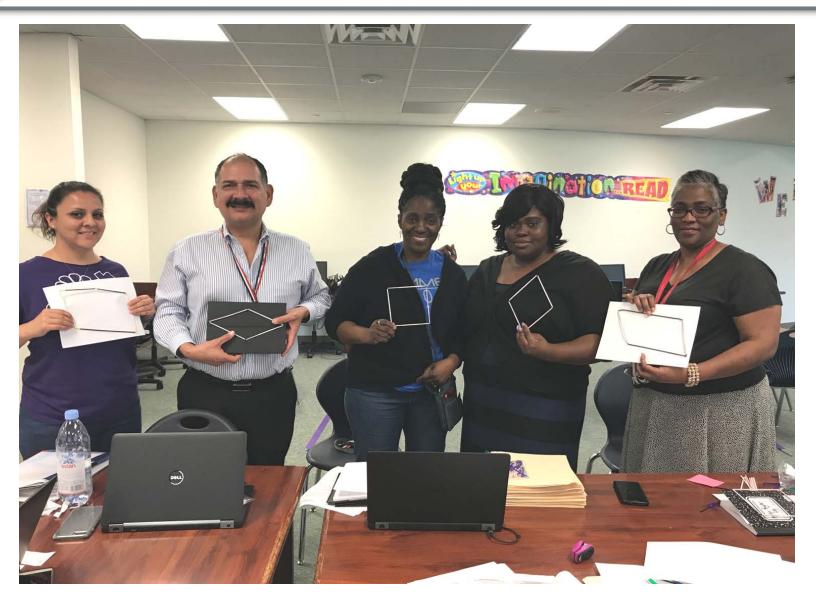
- Acute
- Right
- Obtuse

Use your coffee stirrers and chenille sticks to create different quadrilaterals.

- Square
- Rectangle
- Parallelogram
- Rhombus
- Kite
- Trapezoid

2-D Shapes Challenge

Build a:


- 1. Triangle with congruent sides
- 2. Rectangle with four congruent sides
- 3. Parallelogram with four congruent sides
- 4. Closed figure with five sides
- 5. Triangle with a right angle
- 6. Shapes that are congruent
- 7. Triangle with an angle whose measure is larger than the measure of a right angle
- 8. Quadrilateral with exactly one pair of parallel sides
- 9. Shape with six lines of symmetry
- 10. Shape with three lines of symmetry

Bonus:

- Build a shape with two diagonals
- Build a shape with nine diagonals

Quadrilaterals

Pentagons

Right Trapezoids

Testing Conjectures

Stick Figures

Cooperative Learning Activity from *Get It Together*

RICE Solution to Stick Figures 1

RICE Solution to Stick Figures 2

Three Dimensional Solids

Let's build three-dimensional shapes

- Cube
- Rectangular Prism
- Triangular Prism
- Square Pyramid
- Triangular Pyramid

RICE Attributes of 3-D Shapes

Three Dimensional Figures

Name of Figure	Number of Edges	Number of Faces	Number of Vertices	Conjecture
Cube				
Rectangular Prism				
Triangular Prism				
Square Pyramid				
Triangular Pyramid				

APPS

https://rusmp.rice.edu/resources/symbaloo

Resources

- Burns, M. (1994). *The Greedy Triangle.* New York: Scholastic, Inc.
- Erickson, T. (1989). *Get it Together*. Berkeley, CA: Equals, Lawrence Hall of Science.
- Gavin, M. K., Belkin, L. P., Spinelli, A. M., & St. Marie, J. (2001). *Navigating through geometry in grades 3-5*. Reston, VA: NCTM.
- Greene, R. G. (1997). When a Line Bends . . . A Shape Begins. Boston: Houghton Mifflin Company.
- Mayberry, J. (1983). The van Hiele levels of geometric thought in undergraduate preservice teachers. *Journal of Research in Mathematics Education*, *14*(1), 58-69.