Algebraic Thinking for All Students

Rice University School Mathematics Project Houston, Texas

NCTM 2016 San Francisco California Session \#294

Susan Troutman troutman@rice.edu Director of Secondary Programs

Carolyn L. White clwhite@rice.edu
Director of Elementary Programs

Rate this presentation on the conference app! Search "NCTM 2016" in your app store or follow the link at nctm.org/confapp to download

Join in the conversation! \#NCTMannual

Download available presentation handouts from the online planner at nctm.org/planner SCHOOLMATHEMATICSPROJECT

Why Algebraic Reasoning?

RICE UNIVERSITY SCHOOLMATHEMATICS PROJECT

What is Algebraic Reasoning?

"Algebraic thinking or algebraic reasoning involves forming generalizations from experiences with number and computation, formalizing these ideas with the use of a meaningful symbol system, and exploring the concepts pattern and function."
(Van De Walle, 2010, p. 254)

Algebraic Reasoning includes:

* Pictorial, graphic and verbal descriptions
* Numeric representations SCHOOLMATHEMATICS PROJECT

Where is number in algebraic reasoning?

RICE UNIVERSITY SCHOOLMATHEMATICS PROJECT

Algebraic Reasoning

* Generalization from arithmetic
* Meaningful use of symbols
* Study of patterns and functions SCHOOLMATHEMATICS PROJECT

Generalization from Arithmetic

Developing Arithmetic in the Elementary Grades

* The separation of arithmetic and algebra deprives students of powerful ways of thinking about mathematics.
* Fundamental properties that children use in calculating are the basis for most of symbolic manipulation in algebra.

Using Playing Cards

Let's play the game 'Salute'

* Three players on each team
* Deck of cards
* Paper to record (optional)

RICE UNIVERSITY SCHOOLMATHEMATICS PROJECT

Using Playing Cards to form Equations

RICE UNIVERSITY
 SCHOOLMATHEMATICSPROJECT

Using Playing Cards to form Equations

Four problems involving playing carcls

$$
\begin{aligned}
& \square+\square=60 \quad(x+7=10) \\
& \square+\square=\square+\square 6 \quad(2 x=8+6) \\
& \text { The first two cands ane the same }
\end{aligned}
$$

$$
\square+\square+\square+\square=\square+\square+\square+\square
$$

All eight cards must be different. SCHOOLMATHEMATICSPROJECT

Using order of operations to evaluate expressions and solve equations

 SCHOOLMATHEMATICS PROJECT

Meaningful Use of Symbols

RICE UNIVERSITY SCHOOLMATHEMATICSPROJECT

The students were introduced to a system of equations.
HOW MUCH IS EACH SYMBOL WORTH?

RICE UNIVERSITY

SCHOOLMATHEMATICS PROJECT

HOW MUCH DOES EACH FISH COST?

RICE UNIVERSITY

SCHOOLMATHEMATICS PROJECT

HOW MUCH DOES EACH WHALE WEIGH IN TONS?

Questions to ask students

* Can you tell me what you were thinking?
* Did you solve this in a different way?
* How do you know this is true?
* Does this always work?

RICE UNIVERSITY

SCHOOLMATHEMATICS PROJECT

Which is worth more,
 SMMLEE or a FROWN?

Sum
=\$40
=\$40
$=\$ 32$
$=\$ 35$

Sum
\$52
$\$ 50$ \$42

Figure This! The costs of combinations of frowns, smiles, and neutral faces are shown. How much is a smile worth?

Hint: Find a way to combine two of the rows or columns that have something in common.

Reasoning about unlcnowns is essential in studying equations. Economists, nurses, chemists, and engineers all use equations in their work.

RICE UNIVERSITY SCHOOLMATHEMATICSPROJECT

Systems of Equations

Objectives of the investigation

Students will:

* Develop their ability to reason with and represent with variables;
* Move away from random guess-and-check to a more logical approach for finding values for variables in a system of equations; and
* Understand various approaches to solving the same problem.

RICE UNIVERSITY

 SCHOOLMATHEMATICS PROJECT
Make up your own chart

 SCHOOLMATHEMATICS PROJECT

Study of Patterns and Functions

SCHOOLMATHEMATICS PROJECT

Two of Everything By Lily Toy Hong

Twoof Everything

RICE UNIVERSITY SCHOOLMATHEMATICSPROJECT

Two Of Everything

Read the book.

Act out the story using a magical pot.

Develop a table of values using Input and Output.

Utilize pattern found from the table to generalize a rule verbally and using symbols.

RICE UNIVERSITY SCHOOLMATHEMATICS PROJECT

What would you choose ?

* Choice A: 100 coins each day for 10 days
* Choice B: 5 coins and a magical pot that doubled the coins each day for 10 days

Justify your reasoning

 SCHOOLMATHEMATICS PROJECT
Study of Patterns and Functions

RICE UNIVERSITY SCHOOLMATHEMATICS PROJECT

The Birthday Party Problem

Scenario:

Tom is having a birthday party. For his birthday, he has decided to arrange square tables in the shape of a T, for Tom. Tom is trying to figure out how many tables he will need for different sizes of T's. The different sizes of T's are referred to as arrangements.

RICE UNIVERSITY SCHOOLMATHEMATICS PROJECT

Birthday Party Patterns

Tom wants to arrange the tables for his birthday party in the shape of a T , for Tom. He is trying to figure out how many tables he will need for different sizes of T's.

Arrangement 1

Arrangement 2

Arrangement 3

Use color tiles to build the arrangements 1-5 and look for patterns.

RICE UNIVERSITY

 SCHOOLMATHEMATICS PROJECT
Birthday Party Problem

Arrangement	Number of Tables
1	5
2	
3	
4	

RICE UNIVERSITY

SCHOOLMATHEMATICSPROJECT

Birthday Party Problem

Arrangement	Number of Tables	Number of Tables	
1	5	5	
2	8	$5+3$	
3	11		
4	14		

RICE UNIVERSITY

 SCHOOLMATHEMATICS PROJECT
Birthday Party Problem

Arrangement	Number of Tables	Number of Tables	Number of Tables
1	5	5	$5+0 \times 3$
2	8	$5+3$	$5+1 \times 3$
3	11	$5+3+3$	$5+2 \times 3$
4	14	$5+3+3+3$	$5+3 \times 3$

Finding Patterns and Functions

RICE UNIVERSITY SCHOOLMATHEMATICSPROJECT

The Tiling a Patio problem

Alfredo Gomez is designing square patios. Each patio has a square garden area in the center. Alfredo uses brown tiles to represent the soil of the garden. Around each garden, he designs a border of white tiles. The pictures show the three smallest square patios that he can design with brown tiles for the garden and white tiles for the border.

Navigating Through Algebra in Grades 3-5

RICE UNIVERSITY SCHOOLMATHEMATICSPROJECT

Tiling a Patio

Patio Number	Number of Brown Tiles	Number of White Tiles	Total Number of Brown and White Tiles
1	1	8	9
2	4	12	16
3			

It is now time for GETS
 (Graph, Equation, Table, Solution)

RICE UNIVERSITY SCHOOLMATHEMATICSPROJECT

Crossing the River Problem

Students will:

- develop their ability to reason with and represent with variables
- move away from random guess-and-check to a more logical approach for finding values for variables in a system of equations and
- understand various approaches to solving the same problem.

RICE UNIVERSITY SCHOOLMATHEMATICS PROJECT

Crossing the River Problem

Scenario

Eight adults and two children need to cross a river. A small boat is available that can hold one adult, or one or two children. Everyone can row the boat. How many one-way trips does it take for them all to cross the river?

Lets act the story out with:

* one adult and two children
* two adults and two children

RICE UNIVERSITY SCHOOLMATHEMATICS PROJECT

Crossing the River Problem

Scenario

Eight adults and two children need to cross a river. A small boat is available that can hold one adult, or one or two children. Everyone can row the boat.

How many one-way trips does it take for them all to cross the river?

RICE UNIVERSITY SCHOOLMATHEMATICSPROJECT

Crossing the River Problem

Extension

Can you describe how to work it out for two children and any number of adults?

RICE UNIVERSITY SCHOOLMATHEMATICSPROJECT

Internet Resources

* Scales and balance http://nlvm.usu.edu/en/nav/frames asid 324 g 3 t 2.html
* Pan Balance Shapes http://illuminations.nctm.org/Activity.aspx?id=3531
* Function Machine http://www.shodor.org/interactivate/activities/FunctionMachine/
* Function Machine Math Playground http://www.mathplayground.com/functionmachine.html
* Stop That Creature!
http://pbskids.org/cyberchase/media/games/functions/

RICE UNIVERSITY SCHOOLMATHEMATICS PROJECT

- Visual Algebra Puzzles

Create your own algebra puzzles then try to solve them! This easy to use, educational tool was designed to work together with Shuttle Mission Math, an algebraic reasoning game in the app store. Puzzles can be solved with at least one of the following visual strategies: Scale Up, Scale Down (multiply or divide)
https://itunes.apple.com/us/app/visual-algebra-puzzles/id662990649?mt=8

- Shuttle Mission Math

Shuttle Mission Math is a mathematical puzzle game that makes algebraic thinking both visual and interactive. The goal is to find the weight of each space creature and assemble a team for the next shuttle mission.
https://itunes.apple.com/us/app/shuttle-mission-math/id498617241?mt=8

- Algebra Champ

Game like environment for solving linear equations
https://itunes.apple.com/us/app/algebra-champ/id398873050?mt=8

SCHOOLMATHEMATICSPROJECT

This presentation is based in part on a project partially funded by the Teacher Quality Grants program at the Texas Higher Education Coordinating Board (grant \#496). The Teacher Quality Grants

Program is supported through federal funds under NCLB Title II, Part A.

RICE UNIVERSITY SCHOOLMATHEMATICS PROJECT

Rice University School Mathematics Project Houston, Texas
 Website: www.rusmp.rice.edu

Susan Troutman

troutman@rice.edu
Director of Secondary Programs
Carolyn L. White
clwhite@rice.edu
Director of Elementary Programs
Session \#294

Rate this presentation on the conference app!
Search "NCTM 2016" in your app store or follow the link at nctm.org/confapp to download

Join in the conversation! \#NCTMannual

Download available presentation handouts from the online planner at nctm.org/planner

