Activities for Algebra II and Pre Calculus

Laura Harlow Pearland ISD LauraHarlow8@gmail.com

Activities

Student engagement Increase student understanding Useful and meaningful

Exploration of Conic Sections

Clay Double-Napped Cones

Each table will divide into 2 groups Groups will need:

- PlayDo or Clay
- String
- Note card
- Response sheet

- Each group forms a cone with their clay
- Using the blue nylon thread, slice the cone in order to create the conic section
 - Circle
 - Ellipse
 - Parabola
- On the response sheet, sketch the intersection and write a tweet (140 characters)

Suggestions:

- Use the note card to represent the plane
- Students may need to draw the outline of the clay onto the note card at the "slice"

Two groups put their cones together, touching at the apex of each, creating a double-napped cone

Cut the double-napped cone creating a hyperbola

Degenerate conic sections

occurs when the plane passes through vertex

Degenerate conic sections

occurs when the plane passes through vertex

- Circle and ellipse will degenerate into a point
- Parabola degenerates into a single line
- Hyperbola degenerates into two intersecting lines

Real World

- Ellipses:
 - Lithotripte
 - Whisper gallery
- Parabola
 - Satellite dishes
 - Parabolic Reflectors (headlights)
- Hyperbola
 - Lenses
 - Radio Signals

Patty Paper Parabola

Patty Paper Parabola

Conic Parabolas in the Algebra II TEKS

Each person

- patty paper
- pencil or marker

Patty Paper Parabola:

- Fold a line about 1 inch from side (called the <u>directrix</u>)
- Draw a point above the line (called the <u>focus</u>)
- Fold and crease the paper so that the line passes through the point
- Continue folding and creasing (there should be a minimum of 20 folds)
- Open the paper

Rational Functions

Rational Functions

Adapted from Illuminations (NCTM)

Three part activity developing the idea of vertical and horizontal asymptotes in real world context

Rational Functions

Adapted from Light It Up Activity

Interactive activity – too many places to get bad data

Light Bounce (NCTM)

Linear Equations in 3-Dimension

- Students should be in groups of 2-3
- Provide each group PlayDo (or clay), 6 craft sticks, and a piece of yarn (or string)
- Create a 3-Dimensional space with 3 axes
 - x-axis forward (positive) and back (negative)
 - y-axis right (positive) and left (negative)
 - z-axis up (positive) and down negative

teacher:

- x-y plane is the horizontal plane (such as the floor)
- z-axis brings the figure "up" into space
- Game Designers use this orientation when creating their games
- Ordered triple (x, y, z)

Model graphing ordered triple

A (3, 2, -1)

B (-4, 3, 2)

When graphing linear equation in 2 variables: 2x - 3y = 12

x-intercept, let y = 0 x-intercept: (6, 0) y-intercept, let x = 0 y-intercept: (0, -4)

teacher:

- Have students find the x, y and z intercepts
- Using yarn (or string), students will wrap the intercept of each axis, connecting all the intercepts to each other
- the graph is sometimes called a trace

Graph in the 3-Dimentions space

$$3x - 4y + 6z = 12$$

Graph in the 3-Dimentions space 3x - 4y + 6z = 12

x-intercept, let y & z = 0 x-intercept: (4, 0, 0) y-intercept, let x & z = 0 y-intercept: (0, -3, 0) z-intercept, let x & y = 0 z-intercept: (0, 0, 2)

Inverse Functions

Inverse

Finding Inverses Graphically

- using a crayon, graph the equation and list 3 points on the graph
- sketch the identity function (y = x) using a pen
- fold on the identity function and scrape the paper to make a "reflection" of the original equation
- determine if the inverse of the three points you first found appear on the inverse graph
- write the equation of the inverse graph

Inverse

Laura Harlow