The Collective Effects of Teachers’ Educational Beliefs and Mathematical Knowledge on Students’ Mathematics Achievement

Adem Ekmekci, Danya Corkin, & Anne Papakonstantinou

Rice University

Psychology of Mathematics Education, North American Chapter
November 2015, East Lansing, MI
To investigate the predictive value of teacher-related factors such as beliefs, knowledge, and professional background on student mathematics achievement
• Teacher educational beliefs:

 – Self-efficacy beliefs: degree to which teachers believe they can successfully perform teaching-related tasks within a particular domain or context (Enochs, Smith, & Huinker, 2000)

 – Internal locus of control: extent to which teachers attribute student outcomes (i.e., achievement) to themselves or other (external) factors (Rose & Medway, 1981)

 – Epistemic beliefs: beliefs about the nature of knowledge—i.e., where it comes from, its essence, and how one comes to know (Hofer & Pintrich, 1997)
• Mathematical Knowledge for Teaching (MKT): “The mathematical knowledge that teachers use in classrooms to produce instruction and student growth” (Hill, Ball, & Schilling, 2008, p. 374).

• Experience
 – High experience: 6 years or more
 – Low experience: < 6 years (Wolters & Daugherty, 2007)

• Educational background in subject matter (Rice, 2003)
Conceptual Map

Student-level Variable
- Math Performance (Previous Year)

Teacher-level Variables
- Self-efficacy
- Locus of Control
- Epistemic Beliefs
- MKT
- Teaching Experience
- Math Degree

Students’ Mathematics Performance

A

B

C
A. To what extent do students’ prior math achievement relate to their subsequent math achievement?

B. To what extent do teacher-level characteristics (e.g., beliefs, MKT, college math degree, and experience) relate to students’ math achievement?

C. To what extent does the relation between students’ prior math achievement and current math achievement vary by teacher-level characteristics?
Surveys and Data

• Teacher data:
 – Survey:
 • Demographics and teachers’ educational background
 • Teacher self-efficacy (Enochs, Smith, & Huinker, 2000)
 • Internal locus of control (Enochs, Smith, & Huinker, 2000)
 • Epistemic beliefs (Schoenfeld, 1989)
 – MKT:
 • Learning Mathematics for Teaching (LMT) assessment
 (Hill, Schilling, & Ball, 2004)

• Student data:
 – Student scores on a standardized mathematics test
 (Stanford 10) given at the end of the academic year
This study included 39 of 80 K-12 math teachers who participated in a summer professional development (PD) program.
Demographic Breakdown of Participating Teachers

- White: 30%
- AA: 38%
- Hispanic: 10%
- Asian: 20%
- Other: 2%

Gender of Participating Teachers

- Female: 77%
- Male: 23%
• This study included 2038 K-8 students (List-wise deletion resulted in a sample size of 1129).

Ethnic Background of Students

- White: 54%
- AA: 27%
- Hispanic: 9%
- Asian: 8%
- Other: 2%

Participants (cont.)

- This study included 2038 K-8 students (List-wise deletion resulted in a sample size of 1129).
Results

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Model 1 (unconditional)</th>
<th>Model 2 (within teacher)</th>
<th>Model 3 (between teacher)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>SE</td>
<td>β</td>
</tr>
<tr>
<td>Fixed Effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>0.03</td>
<td>0.10</td>
<td>0.02</td>
</tr>
<tr>
<td>Prior Math Achievement</td>
<td>0.79***</td>
<td>0.02</td>
<td>0.85***</td>
</tr>
<tr>
<td>Self-Efficacy</td>
<td>-0.19</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Locus of Control</td>
<td>0.02</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Epistemic Beliefs</td>
<td>0.28</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>LMT</td>
<td>0.06</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Math Degree</td>
<td>0.42*</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Years of Teaching</td>
<td>0.09</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Prior Math Achievement X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-Efficacy</td>
<td>-0.02</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Locus of Control</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Epistemic Beliefs</td>
<td>0.00</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>LMT</td>
<td>0.04*</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Math Degree</td>
<td>0.08</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Years of Teaching</td>
<td>0.06*</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Random Effects (Variance Components)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student-level effect r_{ij} (σ^2)</td>
<td>0.77***</td>
<td>0.03</td>
<td>0.30***</td>
</tr>
<tr>
<td>Intercept Teacher mean, u_{0j}</td>
<td>0.26**</td>
<td>0.08</td>
<td>0.26**</td>
</tr>
<tr>
<td>Slope, u_{1j} (τ_{11})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wald Z (Variance explained)</td>
<td>3.260** (25%)</td>
<td>2.864** (64%)</td>
<td>2.660** (9%)</td>
</tr>
<tr>
<td>AIC / BIC</td>
<td>3775 / 3785</td>
<td>1938 / 1948</td>
<td>1932 / 1942</td>
</tr>
</tbody>
</table>

* $p < .05$. ** $p < .01$. *** $p < .001$.

Arrow A

Arrow B

Arrow C
• Significant stand-alone predictors of mathematics achievement were
 – Prior mathematics achievement (*student level*), and
 – Teachers’ mathematics degrees (*teacher level*).
• Teachers’ years of experience and MKT had a significant effect on the relation between prior and current mathematics achievement.
High LMT: R^2 Linear = 0.870
Low LMT: R^2 Linear = 0.616
Conclusions

• Students’ prior achievement is the most significant predictor of math achievement (Duncan et al., 2007).

• Teachers having math degrees is positively associated with students’ math achievement (Rice, 2003).

• Teaching experience and MKT moderates the relation between prior and current math achievement (Hill, Rowan, & Ball, 2005).

• Teachers’ beliefs did not emerge as statistically significant predictors of students’ math achievement (see Corkin, Ekmekci, & Papakonstantinou, 2015).
Implications

- Teacher educators should pay close attention to developing MKT.
- Teacher preparation courses should place an emphasis on improving MKT.
- Administrators should retain experienced teachers and provide support for less experienced teachers (e.g., induction, mentoring, collaboration, PD programs).
- Teachers who do not have a strong math background should be given opportunities to learn more math content.
THANK YOU!

Adem Ekmekci
ea16@rice.edu

Danya Corkin
dmc7@rice.edu

Anne Papakonstantinou
apapa@rice.edu

This study is based, in part, on a project partially funded by TQ Grants Program at the Texas Higher Education Coordinating Board under Grant #496.

The slides will be available at RUSMP website