

The Collective Effects of Teachers' Educational Beliefs and Mathematical Knowledge on Students' Mathematics Achievement

Adem Ekmekci, Danya Corkin, & Anne Papakonstantinou *Rice University*

> Psychology of Mathematics Education, North American Chapter November 2015, East Lansing, MI

Outline

To investigate the predictive value of teacher-related factors such as beliefs, knowledge, and professional background on student mathematics achievement

Method

Results

Research

Questions

Background

Introduction

3

Theory

- Teacher educational beliefs:
 - Self-efficacy beliefs: degree to which teachers believe they can successfully perform teaching-related tasks within a particular domain or context (Enochs, Smith, & Huinker, 2000)
 - Internal locus of control: extent to which teachers attribute student outcomes (i.e., achievement) to themselves or other (external) factors (Rose & Medway, 1981)
 - Epistemic beliefs: beliefs about the nature of knowledge—
 i.e., where it comes from, its essence, and how one comes
 to know (Hofer & Pintrich, 1997)

- Mathematical Knowledge for Teaching (MKT): *"The mathematical knowledge that teachers use in classrooms to produce instruction and student growth"* (Hill, Ball, & Schilling, 2008, p. 374).
- Experience
 - High experience: 6 years or more
 - Low experience: < 6 years (Wolters & Daugherty, 2007)
- Educational background in subject matter (Rice, 2003)

Conceptual Map

Method

Results

Research

Questions

Background

Introduction

- A. To what extent do students' prior math achievement relate to their subsequent math achievement?
- B. To what extent do teacher-level characteristics (e.g., beliefs, MKT, college math degree, and experience) relate to students' math achievement?
- C. To what extent does the relation between students' prior math achievement and current math achievement vary by teacher-level characteristics?

Surveys and Data

- Teacher data:
 - Survey:
 - Demographics and teachers' educational background
 - Teacher self-efficacy (Enochs, Smith, & Huinker, 2000)
 - Internal locus of control (Enochs, Smith, & Huinker, 2000)
 - Epistemic beliefs (Schoenfeld, 1989)
 - MKT:

Introduction

- Learning Mathematics for Teaching (LMT) assessment (Hill, Schilling, & Ball, 2004)
- Student data:

Background

 Student scores on a standardized mathematics test (Stanford 10) given at the end of the academic year

Method

Results

Research

Questions

Participants

 This study included 39 of 80 K-12 math teachers who participated in a summer professional development (PD) program.

School Level of Teachers Included in the study

Participants (cont.)

Demographic Breakdown of Gender of Participating Teachers Participating Teachers 2% 10% 20% White 23% AA Female Hispanic Hispanic 30% Male Asian Other 77% 38% Research Background Introduction Method Results Conclusions 10 Questions

Participants (cont.)

• This study included 2038 K-8 students (List-wise deletion resulted in a sample size of 1129).

Results

	Model 1 (unconditional)		Model 2 (within teacher)		Model 3 (between teacher)		
Independent Variable	β	SE	β	SE	β	SE	
Fixed Effects							
Intercept	0.03	0.10	0.02	0.11	0.21	0.16	_
Prior Math Achievement			0.79***	0.02	0.85***	0.05	Arrow A
Self-Efficacy					-0.19	0.16	
Locus of Control					0.02	0.12	
Epistemic Beliefs					0.28	0.16	Arrow P
LMT					0.06	0.15	AIIUWD
Math Degree					0.42*	0.19	
Years of Teaching					0.09	0.11	
Prior Math Achievement X							
Self-Efficacy					-0.02	0.03	
Locus of Control					0.02	0.03	
Epistemic Beliefs					0.00	0.04	
LMT					0.04*	0.03	ANOWC
Math Degree					0.08	0.06	
Years of Teaching					0.06*	0.03	
Random Effects (Variance Components)							
Student-level effect $r_{ii}(\sigma^2)$	0.77***	0.03	0.30***	0.01	0.29***	0.01	
Intercept Teacher mean, u_{0i}	0.26**	0.08	0.26**	0.09	0.24*	0.10	
Slope, $u_{1i}(\tau_{11})$					0.00	0.01	
Wald Z (Variance explained)	3.260** (25%)		2.864** (64%)		2.660** (9%)		
AIC / BIC	3775 / 3785		1938 / 1948		1932 / 1942		
* $p < .05$. ** $p < .01$. *** $p < .001$.		*	*	-			
Introduction Background Question	rch ons	Meth	od	Resu	lts C	conclusi	ons 12

- Significant stand-alone predictors of mathematics achievement were
 - Prior mathematics achievement (student level), and
 - Teachers' mathematics degrees (teacher level).
- Teachers' years of experience and MKT had a significant effect on the relation between prior and current mathematics achievement.

Years of Teaching

Introduction

Background

Conclusions

- Students' prior achievement is the most significant predictor of math achievement (Duncan et al., 2007).
- Teachers having math degrees is positively associated with students' math achievement (Rice, 2003).
- Teaching experience and MKT moderates the relation between prior and current math achievement (Hill, Rowan, & Ball, 2005).
- Teachers' beliefs did not emerge as statistically significant predictors of students' math achievement (see Corkin, Ekmekci, & Papakonstantinou, 2015).

Method

Results

Research

16

Introduction

Background

Implications

- Teacher educators should pay close attention to developing MKT.
- Teacher preparation courses should place an emphasis on improving MKT.

Research

Questions

- Administrators should retain experienced teachers and provide support for less experienced teachers (e.g., induction, mentoring, collaboration, PD programs).
- Teachers who do not have a strong math background should be given opportunities to learn more math content.

Method

Results

17

THANK YOU !

Adem Ekmekci ae16@rice.edu Danya Corkin Anne dmc7@rice.edu a

Anne Papakonstantinou apapa@rice.edu

This study is based, in part, on a project partially funded by TQ Grants Program at the Texas Higher Education Coordinating Board under Grant #496.

The slides will be available at RUSMP website

