

## Mathematics Teacher Leadership: A Sustainable Approach to Improve Mathematics Education

## Anne Papakonstantinou, Ed.D., Adem Ekmekci, Ph.D., & Richard Parr, Rice University

## Goal

The goal of this study is to investigate *the impact* of an NSFfunded mathematics leadership institute whose goals were to increase teachers' math *content knowledge* and improve their *leadership skills* and *teaching practices*.

## Methodology

#### Subjects:

- Seventy-nine mathematics teacher leaders (TL)
- Three years or more of teaching experience
- Two large urban school districts

#### Treatment:

Two summer programs (SP) and at least two academic year (AY) follow-up meetings

|          | Yea      | ar 1 | Year 2 |    | Year 3 Year 4 |      | nr 4 | Year 5 |    | Year 6 |    |
|----------|----------|------|--------|----|---------------|------|------|--------|----|--------|----|
| Cohort 1 | SP       | AY   | SP     | AY | AY AY         |      | AY   |        |    | AY     |    |
|          | Cohort 2 |      |        | SP | AY            | SP   | AY   | AY     |    |        | AY |
|          | Cohort 3 |      |        |    |               | rt 3 | SP   | AY     | SP | AY     |    |

### Instruments:

- Content tests: geometry, algebra, statistics, and combinatorics
- Follow-up surveys administered to TLs, their campus colleagues, and administrators (dichotomous – agree/disagree)
- Classroom observations of TLs (21 items in a checklist format – propositional knowledge, procedural knowledge, lesson implementation, & classroom culture)

### Data Analysis:

- Repeated-measures ANOVA (pre/post-test content) scores)
- Effect sizes (Cohen's d) of gains in content knowledge
- Descriptive statistics of survey results (percentages)
- Descriptive statistics of classroom observation results

#### Paired t-te

Meas

Geometry

Algebra

**Probability** 8

Combinatorio

#### Percentages of Respondents Agreeing with Statements about the Institutes Impact on TLs

Influenced TL

Influenced TL colleagues Influenced TL administrat

# Students

Influenced TL instruction Influenced TL knowledge Influenced TL understand advanced n Influenced TL studying ac Influenced TL mathemati

## --- This material is based upon work supported by the National Science Foundation under Grant No. DRL 0412072 ---

## **Results**

| ests Results for TLs' Scores on Pre/Post-Content Tests |           |        |    |        |       |                    |                |  |
|--------------------------------------------------------|-----------|--------|----|--------|-------|--------------------|----------------|--|
| ure                                                    | Test      | Mean   | N  | S.D.   | S.E.  | Sig.<br>(2-tailed) | Effect<br>Size |  |
|                                                        | Pre-test  | 20.785 | 79 | 9.391  | 1.057 | <0.001             | 1.35           |  |
|                                                        | Post-test | 34.190 | 79 | 10.424 | 1.173 | <0.001             |                |  |
|                                                        | Pre-test  | 14.867 | 79 | 7.635  | 0.859 | <0.001             | 1.81           |  |
|                                                        | Post-test | 29.506 | 79 | 8.505  | 0.957 | <0.001             |                |  |
| <b>Statistics</b>                                      | Pre-test  | 13.930 | 71 | 10.600 | 1.258 | <0.001             | 1.57           |  |
| Statistics                                             | Post-test | 30.113 | 71 | 10.089 | 1.197 | <0.001             |                |  |
| CS                                                     | Pre-test  | 10.563 | 71 | 7.365  | 0.874 | <0.001             | 2.63           |  |
|                                                        | Post-test | 32.662 | 71 | 9.313  | 1.105 | <b>\0.001</b>      |                |  |

|                                     | Administrators<br>(N = 27) | TLs<br>(N = 37) |
|-------------------------------------|----------------------------|-----------------|
| s' leadership skills                | 68                         | 97              |
| s' interactions with campus         | 84                         | 86              |
| s' interactions with campus<br>tors | 72                         | 81              |

#### Percentages of Respondents Agreeing with Statements about the Institute's Impact on TLs' Colleagues and the Colleagues'

|                                                                               | Administrators<br>(N = 27) | TLs<br>(N = 37) | Colleagues<br>(N = 54) |
|-------------------------------------------------------------------------------|----------------------------|-----------------|------------------------|
| s' colleagues' mathematics<br>al strategies                                   | 80                         | 89              | 85                     |
| s' colleagues' mathematics content                                            | 72                         | 76              | 78                     |
| s' colleagues' students'<br>ling of the importance of studying<br>nathematics | 56                         | 57              | 70                     |
| s' colleagues' students' interest in<br>Ivanced mathematics                   | 52                         | 51              | 57                     |
| s' colleagues' students'<br>cs content knowledge                              | -                          | -               | 85                     |
|                                                                               |                            |                 |                        |

#### Percentages of Respondents Agreeing with Statements about Leadership Characteristics of Institute TLs

|                                                       | Administrators<br>(N = 27) | TLs<br>(N = 37) | Colleagues<br>(N = 54) |
|-------------------------------------------------------|----------------------------|-----------------|------------------------|
| Showed a genuine interest in other teachers' opinions | 96                         | 100             | 100                    |
| Provided other teachers with relevant information     | 89                         | 100             | 94                     |
| Interacted with teachers in an open and<br>honest way | 100                        | 95              | 100                    |
| Unequivocally supported other teachers in their work  | 93                         | 97              | 98                     |
| Expressed concerns objectively and<br>constructively  | 85                         | 95              | 94                     |
| Expressed expectations clearly and transparently      | 89                         | 92              | 96                     |

"This program has empowered us as a group to collectively and cooperatively address both positive and negative issues" - A Teacher Leader

"Without her support our students would have suffered a great loss of academic achievement and rigor in their mathematical endeavors" - A TL's administrator

"They (teacher leaders) encouraged me to make my lessons more rigorous" - A TL's campus colleague

Rice University's Mathematics Leadership Institute developed strong and abiding mathematics TLs improved TLs' content knowledge significantly positively impacted TLs' students, colleagues, and colleagues' students

- positively impacted TLs' classroom practices
- students in urban schools.

## **Conclusions**

helped create a professional community of practice that works towards improving mathematics education for all