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RCML History 
The Research Council on Mathematics Learning, formerly The Research Council for 
Diagnostic and Prescriptive Mathematics, grew from a seed planted at a 1974 national conference 
held at Kent State University. A need for an informational sharing structure in diagnostic, 
prescriptive, and remedial mathematics was identified by James W. Heddens. A group of invited 
professional educators convened to explore, discuss, and exchange ideas especially in regard to 
pupils having difficulty in learning mathematics. It was noted that there was considerable 
fragmentation and repetition of effort in research on learning deficiencies at all levels of student 
mathematical development. The discussions centered on how individuals could pool their talents, 
resources, and research efforts to help develop a body of knowledge. The intent was for teams of 
researchers to work together in collaborative research focused on solving student difficulties 
encountered in learning mathematics. 
 
Specific areas identified were: 
 
1. Synthesize innovative approaches.  
2. Create insightful diagnostic instruments.  
3. Create diagnostic techniques.  
4. Develop new and interesting materials.  
5. Examine research reporting strategies. 
 
As a professional organization, the Research Council on Mathematics Learning (RCML) may 
be thought of as a vehicle to be used by its membership to accomplish specific goals. There is 
opportunity for everyone to actively participate in RCML. Indeed, such participation is mandatory 
if RCML is to continue to provide a forum for exploration, examination, and professional growth 
for mathematics educators at all levels. 
 
The Founding Members of the Council are those individuals that presented papers at one of the 
first three National Remedial Mathematics Conferences held at Kent State University in 1974, 
1975, and 1976. 
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(RE)CONSIDERING TEACHERS’ PROMOTION OF THE STANDARDS FOR 
MATHEMATICAL PRACTICE 
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This study investigated mathematics teachers’ teaching practices and the ways they promoted the 
Standards for Mathematical Practice (SMPs) before and after yearlong professional 
development (PD). Our research questions are: (1) To what degree did teachers’ promotion of 
the SMPs change after yearlong PD focused in this area? (2) Were there any differences 
between cohorts and/or grade-bands in their promotion of the SMPs? Results express that 
teachers’ promotion of the SMPs grew significantly during the PD and there were significant 
differences between elementary and secondary teachers.  
 

Although professional development (PD) and the National Council of Teachers of 

Mathematics ([NCTM]; 2000) process standards have been researched for several decades, the 

adoption of the Common Core State Standards for Mathematics (CCSSM) and development of 

the Standards for Mathematical Practice (SMPs) provide a new and important context for study. 

It is not a foregone conclusion that the existence of mathematical practices such as the SMPs 

necessarily implies that teachers promote them during instruction (Bostic & Matney, 2014a; 

Hiebert et al., 2005). Moreover, it cannot be implied that teachers have made sense of them 

(Bostic & Matney, 2014b; Olson, Olson, & Capen, 2014). The present study provides evidence 

of the effects of yearlong PD on teachers’ instruction, particularly in their promotion of the 

SMPs, which are central to doing and learning classroom mathematics (CCSSI, 2010; Koestler, 

Felton, Bieda, & Otten, 2013). It builds from past research (e.g., Bostic & Matney, 2014a) with 

inclusion of new data from two similar PD programs. Furthermore, the study provides research-

based implications for mathematics educators who provide PD to teachers. Undergirding the 

present study are two sets of literatures: research on teachers implementing the SMPs and 

research on professional development.  

Related Literature 

Standards for Mathematical Practice 
The SMPs are part of the Common Core State Standards for Mathematics (CCSSM) 

(Common Core State Standards Initiative [CCSSI], 2010). They offer characterizations of 

behaviors and habits that students should demonstrate while learning mathematics (Bostic & 
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Matney, 2016; CCSSI, 2010). The Principles and Standards for School Mathematics (NCTM, 

2000) and Adding it Up (Kilpatrick, Swafford, & Findell, 2001) guided the descriptions of the 

SMPs. The literature is clear that teachers’ instructional emphasis of the process standards, 

which promoted students’ mathematical proficiency prior to the CCSSM, did not occur often 

(Hiebert et al., 2005). Initial research reports about CCSSM implementation suggests that K-12 

teachers are struggling to make sense of the SMPs (Bostic & Matney, 2014b; Olson et al., 2014) 

much less weave the SMPs into their everyday instruction on the SMCs (Bostic & Matney, 

2016). These findings suggest a need for research about professional development that enhances 

teachers’ understanding of the SMPs and supports them to design and actualize instruction that 

makes the SMPs a part of their mathematics teaching.  

Professional Development 

We drew upon Guskey & Yoon’s (2009) analysis of research about what works in PD when 

considering the design of the PD involved in this study. We sought to structure PD that adhered 

to the key features they found to be effective: (a) PD should have workshops focused on 

“research-based instructional practices” (p. 496) involving active-learning experiences for 

participants; (b) PD activities ought to encourage teachers to adapt a variety of practices to a 

specific content area, (c) PD should include a sufficient amount of time for teachers to make 

sense of the ideas and promote the application of these ideas during teachers’ instruction; (d) PD 

ought to be structured and have sustained follow-up. A content-focused PD experience provided 

a space for teachers to apply a variety of practices to their classroom instruction. We utilized 

these features in tandem with the research-based work of NCTM’s (2007) implementation 

standards for teaching and learning to provide teachers a conceptualization of teaching as 

sufficiently complex enough to promote student learning. The NCTM (2007) implementation 

standards define and emphasize the importance of worthwhile mathematical tasks, learning 

environment, and discourse. Past research has utilized these standards in PD. Boston (2012) 

detailed how focusing on implementing worthwhile tasks during a yearlong PD enhanced 

secondary teachers’ knowledge, which in turn influenced their instructional practices. For 

example, after the yearlong PD they were able to identify elements of tasks with high cognitive 

demand and concurrently selected more tasks with high cognitive demand for their own 

instruction. Improving teachers’ ability to select worthwhile tasks is not the only way to impact 

their instructional outcomes (Boston & Smith, 2009); supporting them to establish an effective 
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learning environment and sustain mathematical discourse between students are also necessary to 

maximize students’ opportunities to learn (NCTM, 2007). Our research builds upon Boston and 

others’ work by adding a new layer into PD, the SMPs. The research questions for the present 

study are: (1) To what degree did teachers’ promotion of the SMPs change after sustained (i.e., 

100 or more hours) PD focused in this area? (2) Were there any differences between cohorts 

and/or grade-bands in their promotion of the SMPs?   

Method  
Context of the Professional Development 

We aim to explore how teachers’ instruction changed to promote the SMPs and connect this 

growth to PD projects. We focus on elementary and secondary teachers’ experiences as 

influenced by four sets of teachers in sustained grant-funded professional development programs 

from one Midwest state. Three of those sets included cohorts of K-5 and grades 6-10 (i.e., 

Algebra 2) mathematics teachers who convened for a one-year program during 2012-2013, 2013-

2014, and 2014-2015. These cohorts met for 100 hours during one calendar year. The fourth set 

included cohorts of K-5 and grades 6-8 mathematics teachers who convened for a two-year 

program (2014-2016) for a total of 256 PD hours (128 hours per year). For ease of reading, we 

name the set of K-5 and 6-8 cohorts from 2014-2016 “Apple” and “Blueberry” and the three sets 

of K-5 and 6-10 cohorts from 2012-2015 “Cherry”. Generally speaking, the aim of the PD 

projects included (1) making sense of the SMPs, (2) exploring inquiry through NCTM’s (2007) 

standards (i.e., worthwhile tasks, mathematical discourse, and appropriate learning 

environments), (3) implementing classroom-based tasks that aligned with the CCSSM, and (4) 

increasing mathematical knowledge and understanding. Teachers read and discussed chapters 

from NCTM books (e.g., Mathematics Teaching Today [NCTM, 2007]) and completed various 

assignments including journaling, writing, enacting, and reflecting on CCSSM-aligned 

mathematics lessons, and solving rich mathematics tasks. They also reflected on their 

mathematics instruction as well as the instruction of others implementing the CCSSM. 

Additionally, Apple and Blueberry cohorts engaged in lesson studies each semester, which were 

conducted at schools of participating teachers, while Cherry cohorts did not. Thus, the PD 

formats were fairly similar except for lesson study and number of hours met.  
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Participants 

      A total of 152 teachers participated in this study between the three PD programs. Table one 

shows teacher sample data by program they participated in and grade level they taught at the 

time of participation. Across the Apple cohort, 20 secondary teachers were part of the program. 

Thirty-four teachers composed the Blueberry cohort, (i.e., n= 23 elementary and n = 11 

secondary). Ninety-four teachers participated in the Cherry cohorts; (n = 64 elementary and n= 

35 secondary mathematics). Teachers for Apple, Blueberry, and Cherry cohorts came from 

urban, suburban, and rural school districts. All cohorts followed the same meeting format, used 

the same framework for the PD, but met in different parts of the Midwest state due to 

geographical constraints.  

Table 1 

Demographic Data for Teacher Participants 

Demographic Variables Frequency (%) 

Program  

     Apple 

     Blueberry 

     Cherry 

 

20 (13%) 

34 (22%) 

98 (65%)  

Grade Level 

     Elementary 

     Secondary 

 

87 (57%) 

65 (43%) 

Program x Grade Level 

     Program A Elementary 

     Program A Secondary        

     Program B Elementary 

     Program B Secondary 

     Program C Elementary 

     Program C Secondary  

 

0 (0%) 

20 (100%) 

23 (68%) 

11 (32%) 

64 (65%) 

34 (35%) 

 

Data Collection and Analysis 

Teachers were asked to design, enact, and videotape one lesson when the PD began (i.e., pre-

PD) and again near the end of the PD. For Cherry cohorts, this occurred after one year of PD 
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(100 hours), for Apple and Blueberry cohorts this occurred after two years of PD (256 hours). 

Depending on the grade level and the local school context of the teacher, the videos were as short 

as 25 minutes and as long as 65 minutes. Since our study focused on ways that teachers 

supported students’ engagement in the SMPs during instruction, we investigated the videotapes 

as a means to report instructional changes made during the PD program. Such analysis 

approaches have been used in similar studies such as Boston (2012) and Boston and Smith 

(2009).  

Data analysis required two parts. The first part involved watching the videotapes and 

reflecting on instruction using a protocol focused on the ways that teachers’ instruction promoted 

the SMPs. Two mathematics education faculty as well as seven mathematics education graduate 

students watched the videotapes and conducted the analysis using a protocol validated for this 

purpose (see Bostic & Matney, 2016; Bostic, Matney, & Sondergeld, 2017). It provides look-fors 

that link mathematics teaching behaviors and the SMPs. For example, three aspects for the first 

SMP: Make sense of problems and persevere in solving them (CCSSI, 2010), include looking for 

the ways teachers (a) Involve students in rich problem-based tasks that encourage them to 

persevere in order to reach a solution, (b) Provide opportunities for students to solve problems 

that must have multiple solutions and/or strategies, and (c) Encourage students to represent their 

thinking while problem solving (Bostic & Matney, 2016). While there may be other aspects 

indicative of SMPs, the protocol provides an evidence-based framework for examining 

mathematics instruction using the SMP lens. Next, pairs of coders compared their observations 

with one another to gather interrater agreement. To maintain fidelity with use of the protocol, the 

team conducted meetings every few months with the sole purpose of establishing interrater 

agreement. The minimum threshold for interrater agreement is rwg = .9 (James, Demaree, & 

Wolf, 1993). Interrater agreement exceeded the minimum threshold; it was as low as rwg =.92 and 

as high as rwg = 1.0]. Thus, we felt confident that our team was applying codes in a consistent 

manner.  

The second part of data analysis focused on quantifying changes in the number and type of 

instructional opportunities related to the SMPs. The type and frequency of instructional 

opportunities related to each SMP were categorized. We then summed the pre-PD number of 

indicators for each SMP to create a grand total across all eight SMPs. The pre-PD grand total 

was compared to the post-PD grand total. Next, we completed a 2 Within, 2 X 3 Between 
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Factorial ANOVA to answer our research questions. The within independent variable was time 

(pre-PD and post-PD). Between independent variables were grade level taught (elementary or 

secondary) and PD program (Program Apple, Blueberry, or Cherry). The dependent variable was 

SMP score across all analyses.  

Results 

      For RQ1, regardless of PD group or grade level taught, on average teachers expressed 

significantly more opportunities to promote the SMPs during post-PD instructional observations 

compared to pre-PD instructional observations; F(1, 147) = 58.87, p<.001. The effect size is 

large with partialη2 = .286 indicating that 28.6% of the change in SMP scores is attributed to the 

PD. For RQ2, there were no significant differences by grade level taught (p=.465). However, 

there were significant differences by program; F(2, 147) = 3.71, p=.027. The effect size is small 

with partialη2 = .048 indicating that only 4.8% of the variance in SMP scores can be attributed 

to program. This statistical difference between programs in average SMPs was noted at the post-

PD observation time between only Apple (M=3.36, SD=2.11) and Cherry (M=5.37, SD=2.78) 

programs (p<.01). At pre-PD observation time, all programs performed statistically similar. On 

average, teachers increased 2.35 (SD=2.73) SMP indicators from pre-PD to post-PD; Cherry 

increased most (M=2.82, SD=2.78) followed by Blueberry (M=1.82, SD=2.45) and then Apple 

(M=0.95, SD=2.10).  

Limitations 

There are limitations to this study. Our sampling frame has limitations. Teachers from Apple 

cohorts volunteered to participate in the PD whereas the same is not true for Blueberry cohorts. 

Broadly speaking, more than half of the teachers from Blueberry cohorts were (a) required to 

attend by school or district-level personnel or (b) strongly encouraged by peers who decided to 

participate. Thus, those who are less motivated to complete long-term PD may have different 

outcomes making instructional changes. Moreover, many of the teachers from the Apple cohort 

participated in PD between 2012-2015 as part of the Cherry cohort. It is plausible that there may 

be a ceiling effect for average promotion of SMPs during instruction, which limited the mean 

growth for Apple teachers.  

Importance of the Research 

Taken collectively, these quantitative findings suggest that on average, teachers provided 

more opportunities for students to engage in the SMPs after the PD. All teachers showed growth 
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in their promotion of SMPs after experiencing more than 100 hours of PD. There were no 

statistically significant differences across cohorts of teachers but there was a difference in the 

frequency with which elementary and secondary teachers promoted the SMPs during their 

instruction. These results have implications that connect research and practice. First, we noticed 

that instructional opportunities were clearly influenced by the implementation of teachers’ 

choices of task, changes in learning environment, and ways discourse was promoted (see Bostic 

& Matney, 2014a; 2016 for discussion). Teachers internalized the standards for teaching and 

learning mathematics (NCTM, 2007) in ways that resonated with their instruction in the 

Common Core-era. Second, Guskey and Yoon’s (2009) framework provided a means for us, as 

mathematics teacher educators, to frame our PD. This study adds convergent evidence that 

adhering to key features of PD leads to significant outcomes for PD participants.   

In conclusion, the results broadly suggest that PD drawing upon Guskey and Yoon’s key 

features as well as focusing on the CCSSM (CCSSI, 2010) and NCTM’s Standards (2007) has 

potential to lead to changes in the way K-10 teachers designed and implemented mathematics 

instruction, as evidenced by teachers involved in this program. The SMPs do not dictate 

curriculum or teaching but they do provide ideas for engaging students in ways that promote 

mathematics proficiency during classroom instruction. PD may help mathematics teachers at all 

grade levels make sense of mathematics instruction that supports students’ appropriate 

mathematical behaviors.  

Endnote 
1 This manuscript was supported by multiple grants. Any opinions expressed herein are those 

of the authors and do not necessarily represent the views of the granting agencies. 
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PRESERVICE TEACHERS EXPLORING PRIME FACTORIZATION 
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Research on the understanding of prime factorization suggests that preservice teachers prefer 
computational methods to find factors. We present a teaching intervention implemented with K-8 
preservice teachers in a public university in the Northwest US. Our intervention consisted of four 
worksheets that students discussed in small groups. The intervention intended to prompt 
students’ recognition of existence and uniqueness of the prime factorization. Results from pre- 
and post- tests show that students combine different methodologies to find the factors of a 
number, but they begin to rely more heavily on the Fundamental Theorem of Arithmetic after 
experiencing the intervention. 
 

The effort to fortify the mathematical understanding of preservice teachers is aimed at 

improving the teaching of mathematics at the elementary school level (Kajander, 2010; Brown, 

Thomas & Tolias, 2002; Manouchehri & Almohalwas, 2008). Research shows that many 

teachers in the United States struggle to understand the mathematical concepts that they need to 

teach (Ma, 1999). In particular, our investigation addresses teacher’s struggle to understand 

elementary number theory, an important tool that aids in the teaching of factors and greatest 

common factor in fourth and sixth grade respectively.  

Brown (2000) suggests that one of the principal elements for understanding elementary 

number theory is the deep understanding of prime factorization. However, the usefulness of 

prime factorization is under appreciated by preservice teachers, who tend not to fully understand 

the Fundamental Theorem of Arithmetic (FTA) (Zazkis & Campbell, 1996). This theorem states 

that every integer greater than one is either prime or it has a unique prime factorization. Research 

has revealed that participants’ abilities to solve number theory problems related to the FTA can 

be improved after interventions (Feldman & Roscoe, 2015). 

We explored the use of this theorem as a tool for finding the factors of a number – a skill that 

is taught in 4th grade according to the Common Core State Standards for Mathematics (CCSSM). 

Using the FTA to find factors can facilitate the recognition of the multiples of a number and the 

classification of a whole number as prime or composite, both mentioned as part of the 4th grade 

standard CCSS.MATH.CONTENT.4.OA.B.4. (CCSSI, 2010). A deep understanding of the FTA 

can help make connections for a better understanding of the greatest common factor and the least 

common multiple of a whole number by preservice elementary teachers (Feldman, 2012), a skill 
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that is taught in 6th grade as part of the standard CCSS.MATH.CONTENT.6.NS.B.4. (CCSSI, 

2010). 

Theoretical Framework 

The theories that helped shape the design of the teaching intervention include constructivist 

learning theories (Glasersfeld, 1989) and cooperative learning theories (Johnson & Johnson, 

1999). Based on constructivism (Glasersfeld, 1989) students must actively investigate 

mathematics to form their own knowledge. The teaching intervention was implemented using 

cooperative learning groups (Johnson & Johnson, 1999), through which students worked 

collaboratively in small group settings and discussed their ideas. Participants were asked to 

actively explore, investigate and provide reasoning for their ideas (Glasersfeld, 1989). 

Furthermore, this activity took place in small group setting, where learning was cooperative. The 

primary aim of the activity was to increase teachers’ mathematical knowledge for teaching, 

which has been shown to positively affect student achievement (Hill, Rowan & Ball 2005; 

Greenberg & Walsh, 2008; National Mathematics Advisory Panel, 2008). Our research question 

was: In what ways, if at all, do students’ reliance on the FTA change in association with the 

teaching intervention? 

Methodology 
Our research study took place at a public, Ph.D. degree granting institution in the Northwest 

US during the spring of 2016. The teaching intervention was implemented in a three-credit 

mathematics course for K-8 teachers. All the students in the class agreed to participate 

anonymously in the activity, a total of 17 students. We used an intervention that consisted of four 

worksheets that students discussed in small groups. Previous to the investigation, students 

created the sieve of Eratosthenes to find the primes from 1–120 and constructed the factor tree 

for some numbers. They also found all the factors of a number N by using trial division or 

checking all the primes less than or equal to √N.  

The investigation consisted of a pretest, an exploration activity, and a posttest. Each student 

participated in the research as part of regular classroom activity through four exploration 

worksheets. Though each student had his or her own worksheets, researchers encouraged 

discussion in small groups of 2-3 students. Also, the researchers provided some guidance 

through questioning and prompting students to justify their work. Immediately following the 
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intervention, a traditional lecture was delivered which included the statement of the FTA and an 

example of its implications for finding factors. After this, each student worked on the posttest.  

Table 1 

Exploration Worksheet 1 
Question Prompt 

Q1.1 Fill in each blank with the correct counting number to make each equation true. If no such 
counting number exists, write “IMPOSSIBLE” next to the equation. 

a. 	2	×	________ = 42 
b. 		3	×	________ = 42 
c. 		5	×	________ = 42 
d. 		7	×	________ = 42 
e. 11	×	________ = 42 

Q1.2 Write the number 42 as a product of prime numbers. That is, find a prime factorization of 42.  
Q1.3 Is it possible to find a different prime factorization for 42? Explain. 
Q1.4 How do your answers to #2 and #3 help explain your answers in #1?  

The four worksheets were used for the teaching intervention. The first three worksheets were 

nearly identical but each investigated a different number: 42, 45 and 88. The fourth and last 

worksheet provided students with an opportunity for reflection. Table 1 lists the questions used 

for the worksheets 1-3. Worksheet 4 consisted of a reflective question where students needed to 

find all the factors of a number 𝑁𝑁 using what they had learned in the previous worksheets, 

explaining their reasoning. Table 2 shows Worksheet 4. 

Table 2 

Exploration Worksheet 4 
Question Prompt 

Q4.1 Given that N is an integer with the following prime factorization: 𝑁𝑁 = 11,	×	7	×	5. Use what 
you have learned to find all the factors of N. Show your work.  

The effects of the intervention were measured qualitatively with a pretest and a posttest. The 

questions used for these assessments are shown in Table 3. Table 4 shows the rubric used for 

question P1 of the pretest and posttest. The purpose of this rubric is to identify if each student 

made use of the FTA to decide if a number is or is not a factor of a given number N.  

For example, a student who makes use of the FTA might recognize that a number would be a 

factor if its prime factorization were a subset of the prime factorization of the given number N. A 

correct use of the FTA was recorded in category C, and a partial use was recorded in category E. 

Other methods are merged in categories A and B: calculating N by multiplying all the factors, 

using trial division, factor tree and divisibility rules. We also included categories for wrong 

answer with or without explanations and right answers without explanations or wrong reasoning.  
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Table 3 

Pretest and Posttest Questions 
Question Prompt 

P1a Consider the number 𝑁𝑁 = 3, ⋅ 5. ⋅ 11 ⋅ 17/. Which of the numbers in the table below are factors 
of N? Explain how you know for each. If you use a calculator show the calculations you made.  

Number Factor of N? How I know. 
5 YES/NO  
19 YES/NO  
15 YES/NO  
21 YES/NO  
75 YES/NO  

 

P2b Consider the number 867 = 17, ⋅ 3. Find all factors of 867 in the most efficient method that you 
know. Show your work. If you use a calculator show the calculations you made.  

 

aFor the posttest we used 𝑁𝑁 = 2/ ⋅ 5. ⋅ 7, ⋅ 13 and the numbers on the table were: 11, 7, 14, 21 and 98.	
bFor the posttest we used the number 637. 

Table 4  

Rubric for P1 (Pretest and Posttest) 
Category Description 

A Students multiply the factors and calculate the number, for instance 303,991,875. Then applied a 
divisibility rule. 

B Students used trial division or used the fact that a previous number (where trial division was used) 
was a factor. Multiply the factors and calculate the number N, for instance 303,991,875. Then divided 
N by the number to determine if the result was an integer number. If it has a reminder different than 0, 
then the number is a factor of N. 

C Student reason that if the number is prime, then it will be a factor if it is in the prime factorization of 
N. If the number is composite, then it will be a factor if the prime factorization is a subset of the prime 
factorization of N. Did not try any of the other options. 

D Student gives the correct answer without explaining their reasoning or with a wrong reasoning.  
E Student used some concepts of prime factorization or combination of methods that include an aspect 

of the FTA. Students under this category may have one of the following misconceptions for 
composite numbers: A number is a factor if the primes in the factorization are in the prime 
factorization of N no matter the exponents. A number is a factor if one of its primes in the prime 
factorization is in the prime factorization of N. 

F Wrong answer with or without explanation. 

Table 5 shows the rubric used for question P2, which includes three variables that were 

assessed: (I) the number of factors identified of the given number N, (II) record of methodologies 

partially used and (III) if the student used correctly and exclusively the FTA. The second 

variable tells us if a student incorporated partially the methodologies described in Table 5. The 

use of a methodology does not necessarily indicate a full understanding of the method. For 

example, students that use the prime factorization tool to find factors may use the methodology 

by uniquely considering numbers identified in the prime factorization but then use their 

calculator to divide the number by each of the "candidates" to corroborate their understanding. 
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The third variable allows us to identify which of the students that applied the FTA exclusively 

and used the FTA correctly. 

Table 5 

Rubric for P2 (Pretest and Posttest) 
Variable Description 

I Number of factors reported. We took one "point" off for wrong generalizations, for example: the 
factors are 1,3, 17 and all the multiples. 

II Record of methodologies partially used: 
Category Description 

W Use divisibility rules to find some of the factors 

X 
Calculate the sqrt(N) and/or used trial multiplication factors less than 
sqrt(N) 

Y 
Construct a factor tree or factor lattice, and then find the factors using 
the tree 

Z Use prime factorization tools to find the factors 
 

III Did the student evidently use a correct reasoning of the Fundamental Theorem of Arithmetic to find 
the factors? This is a binomial variable that can be answered with yes (1) of no (0). 

Results 

The results show that students tended to rely on the FTA more after the intervention. While 

the inclusion of a statement of the FTA and an example of its use as part of the intervention 

might draw into question the source of the effect, the literature has demonstrated that telling 

preservice teachers about the FTA fails to result in an appreciation of its utility in predicting a 

number’s factor (i.e., Zazkis, 1996).  

 

 

 

  
 
 
Figure 1. Classification of the methods used for each item in P1. Categories A, B, C, D, E or F 
are described in Table 4. 

Figure 1 shows the increments of the total items in P1 that were answered using the FTA. In 

the pretest 2.4% of the items of question P1 were answered using a correct application of the 

FTA (Category C) and 8.2% using some concepts related to the FTA (Category E). On the other 

hand, 45.9% of the posttest items of question P1 were answered using a correct application of the 

FTA (Category C) and 9.4% using some concepts related to the FTA (Category E).  
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Figure 2. Work of student S15 in the posttest for question P1. An example of Category E 
described in Table 4. 

Figure 2 presents an example of Category E for the posttest question P1. In this example, a 

student used concepts related to the FTA but also relied on other tools to find if 21 was a factor 

of 𝑁𝑁 = 2/ ∙ 5. ∙ 7, ∙ 13. The reasoning used by the student S15 shows that the student used the 

FTA to tell that 21 will be a factor of N, if 7 and 3 were also factors. However, the student used a 

divisibility rule to determine if 3 is a factor of 𝑁𝑁 = 2/ ∙ 5. ∙ 7, ∙ 13 and just mentions that “7 

goes into 3185000.” 

 
Figure 3. Classification of the methods used in the question P2. Categories W, X, Y and Z are 
described in Table 5. 

For question P2 the numbers 867 and 637 used on the pre- and post- test had 6 factors in total 

and students were able to find an average of 4.1 and 5.7 factors during the pretest and the 

posttest, respectively. Notably, 6 of 17 students were able to find all the factors during the pretest 

vs. 15 of 17 in the posttest. An analysis of methods used by students for finding the factors was 

conducted. Figure 3 shows that the same number of students used some concepts of the FTA, 

Category Z, to find the factors during the pretest vs. the posttest in question P2. Additionally, for 

variable III in Table 5, we found that none of the students used only and correctly the FTA for 

question P2 during the pretest versus 41.2% in the posttest.  

 
Figure 4. Work of student S17 in the pretest for question P2. This was classified in categories X 
and Z.  
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The results suggest that students in the course were willing to use the FTA to find factors, but 

tended to support the use of the FTA with other techniques. Even when the number of students 

using some FTA was equal in the pretest and the posttest, students in the posttest used fewer 

alternative methods. Consider the work of student S17 as shown in Figure 4 and Figure 5. Here 

we see an example of a student that used various methods during the pretest, but only the FTA to 

find factors during the posttest for question P2.  

 
Figure 5. Work of student S17 in the posttest for question P2. This was classified in category Z. 

  Reliability 
The researchers examined a sample of five pretest and five posttests to create a draft of the 

rubrics presented in Table 4 and Table 5. Then the researchers analyzed the collected data from 

the pretest and the posttest using this researcher-developed rubric. Both researchers 

independently scored the collected data and the scoring demonstrated 84.76% agreement. 

Disagreements in the scoring were resolved via debate and rubric clarification until 100% 

agreement was attained.  

Discussion 
Preservice elementary teachers that participated in the study used the FTA with more 

confidence after the intervention than before the intervention. Evidence of this conclusion can be 

found in the use of fewer alternative methods such as divisibility rules and trial division in the 

posttest versus the pretest. We also found that 2.4% of the students correctly used the FTA 

during the pretest to identify factors of a given number versus 45.9% in the posttest. These facts 

answered our research question: In what ways, if at all, do students reliance on the FTA change 

in association with the teaching intervention? Although we included all the students in our class, 

the size of our experiment was small. 

This study is important because it provides tools for supporting a deep understanding of the 

FTA, which can help preservice teachers and their students to make connections for finding 

factors, the greatest common factor and the least common multiple of a whole number. Future 

questions to investigate preservice elementary teachers’ understanding of the FTA are: (1) what 
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interventions might transition students towards reliance of the FTA more quickly?; (2) can 

students reverse their understanding of the FTA to create a number that have certain factors?; 

and (3) can students create a deeper understanding of the greatest common factor and the least 

common multiple using the FTA? 
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This paper describes how two United States Department of Education Mathematics and Science 
Projects impacted in-service elementary mathematics teachers’ number and operations content 
knowledge using differing delivery models (face to face and blended). Pre and posttest data 
analysis found both projects significantly impacted elementary mathematics teachers’ number 
and operations content knowledge. Delivery model design and implementation successes and 
challenges will be discussed. Implications for in-service and preservice content and pedagogy 
courses and delivery models are noted. 
 

Introduction 

The United States Department of Education Mathematics and Science Partnership (MSP) 

program is: 

A federal formula grant program that funds collaborative partnerships between science, 
technology, engineering, and mathematics (STEM) departments at institutions of higher 
education (IHEs), and high-need school districts. These partnerships provide intensive, 
content-rich professional development to teachers and other educators, with the goal of 
improving classroom instruction and ultimately, student achievement in math and 
science. Currently, funds are distributed through a formula grant to states which then hold 
their own competitions to award project funding. (United Stated Department of 
Education, n. d.) 
 

Three MSP grants are discussed that were awarded to the University of Montana, Montana State 

University, and Georgia Southern University. The overarching goal of each grant is to improve 

the content knowledge of in-service elementary teachers. The research question addressed in this 

study is: Using two distinctly different delivery models, how did the mathematics content 

delivery within each project impact the content knowledge of practicing K-5 mathematics 

teachers? 

Effective Professional Learning for Number and Operations 

The National Council of Teachers of Mathematics Professional Standards for Teaching 

Mathematics states:  

Teachers’ comfort with, and confidence in, their own knowledge of mathematics affects both 
what they teach and how they teach it. Their conceptions of mathematics shape their choice of 
worthwhile mathematical tasks, the kinds of learning environments they create, and the 
discourse in their classrooms. (1991, p.132) 
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The same document posits “[university] faculty should collaborate with other practicing 

professionals to design preservice and continuing education programs that reflect the issues of 

reform and change that must be implemented” (p.184). Today, national policy recommendation 

reports such as The Mathematical Education of Teachers II (MET II) agree: 

high-quality mathematical education of teachers is the responsibility of institutions of higher 
education, professional societies, accrediting organizations, and school districts, as well as 
PreK-12 teachers themselves. Their collective goal needs to be continual improvement in the 
preparation and further education of mathematics teachers. (Conference Board of the 
Mathematical Sciences, 2012, p.3)  
Professional development must be grounded in the content needs of teachers and built on 

what constitutes effective professional development (PD). MET II specifically notes “for 

practicing K-12 teachers, content-based professional development offered by Math Science 

Partnerships has changed their attitudes about mathematics, and increased their mathematical 

interest and abilities. Moreover, it has increased the achievement of their students” (2012, p. xii). 

Among the MET II recommendations for numbers and operations course content are counting 

and cardinality, operations and algebraic thinking, number and operations in base 10, and 

number and operations involving fractions. The projects described in this paper incorporated 

these content themes into their curriculum for teachers. Furthermore, DeMonte (2013) and 

Reisener (2013) suggest that effective professional development encompasses the following: (1) 

aligns with school goals, state and district standards and assessments, and other professional-

learning activities; (2) focuses on core content and modeling of teaching strategies for the 

content; (3) includes opportunities for active learning of new teaching strategies; (4) provides the 

chance for teachers to collaborate; and (5) includes follow-up and continuous feedback. The 

professional development models used in the two projects described here incorporated all of 

these components. 

Methodology 
With the intent to improve the content knowledge of elementary school teachers, both 

projects set out to develop cohesive professional development to accomplish this goal. Therefore, 

each project systematically developed unique approaches while incorporating the suggestive PD 

components mentioned above. Due to the vast geography of Montana, PD was delivered using 

both face-to-face and online PD, while in Georgia, only face-to-face delivery was used. 

However, researchers on each project were still interested in the impact of the respective PD. 
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Researchers on both projects created pre and posttests focused on content that was based on state 

standards and project course goals.  

Montana STREAM Project 

The Co-PIs of the Montana STREAM project wanted to have equal representation of higher 

education and K-8 practitioners on the design teams. Therefore, these teams were comprised of 

experienced mathematics teachers and university educators. The task of each team was to write 

online modules with complimentary face-to-face workshop sessions for K-8 teachers statewide. 

Initially, STREAM targeted only Grade 4-7 teachers because in Montana teachers receive a K-8 

teaching license and sometimes lack the mathematics content necessary in the upper grades. The 

project materials addressed a series of themes aligned with Common Core mathematics content 

domains (e.g. number systems and operations, ratio and proportions, data and statistics, 

geometry). In Year 1, the STREAM partnership included teachers from 15 Montana school 

districts. Then in Year 2, additional teachers from five districts participated. Even though 85 

teachers were involved during the first two years, matching up the pretests and posttests resulted 

in only 39 participants for Year 1 and 19 participants for Year 2. Both cohorts experienced 

approximately 140 hours of PD online and face-to-face. A pretest was the initial task the 

participating teachers engaged in on the first day of their professional development. The total 

possible score was 47. Test items included items involving numbers and operations (e.g. place 

value and computation), and others similar to the following: 

1. If you buy something at a 40% discount off the listed price of $68, what price do you 
pay? Place your answer in the box provided.      

2. In a certain company, the ratio of the number of female employees to the number of male 
employees is exactly 3 to 4. Which of the following could be the total number of 
employees in the company? 

 
 
3. Jesse runs 10 meters in the same time as Owen runs 8 meters. One day they ran around a 

400-meter circular track. They started at the same place at the same time and ran in 
opposite directions. What was Jesse’s location on the track when Owen passed the 
starting line the third time? Place your answer in the box provided. 
 

Professional development in Year 1 was delivered over six months beginning with a face-to-

face workshop (8 hours), including introductory activities from each of the four modules 

(Mathematical Practices (MP), Number Systems and Operations (NSO), Fraction, Ratio and 

Proportions (FRP), and Teacher Learning and Leadership (TLL)). Teachers then participated in 

[A] 81 [B] 87 [C] 91 [D] 95 [E] 101 
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these modules via asynchronous 4-week online delivery (24 hours each). Partner districts were 

located across Montana, warranting the need for online learning, which proved to be successful 

most of the time, with only a few minor issues with connectivity. Finally, a four-day summer 

academy (30 hours) took place with all teacher cohorts from each district. Teachers received 

final information from each module and they then developed a strategic plan to share 

professional development within their schools. These plans, accompanied by a small budget, 

were implemented throughout the following school year.  

The STREAM leadership team developed guidelines for all online modules including tasks 

that were both individual and group oriented. Besides teaching content and pedagogy, the 

modules were to be completed with 6-8 hours of teacher time per week, keeping in mind the 

busy work load of teachers. Oftentimes teachers were able to try an activity with their own 

students and provide student data and feedback. The NSO Module incorporated these guidelines 

with the following individual and group activities:  

Activity 1. Community Building: Numbers About Me 
Activity 2. Content: Characteristics of a Learning Progression 
Activity 3. Create a Learning Progression (Group) 
Activity 4. Align Mathematical Tasks to the Montana Common Core Standards  
Activity 5. Read a Professional Article (with group discussion following) 
Activity 6. Write a Learning Plan 
Time frames changed a bit from one year to the next. While the Year 1 cohort’s first year 

was only five months, the Year 2 cohort followed a similar pattern of events, but spanning eight 

months, with an additional face-to-face mid-year workshop. Also, two new modules were 

created: Geometric Thinking and Data and Statistics. Modules were offered on a rotating basis, 

keeping teacher requests in mind. The Mathematical Practices continued to be the most requested 

modules. The posttest was given to both sets of cohorts during the Summer Academy. The 

results are discussed below in the findings section.  

Georgia Southern Project 
The Georgia Southern University project served nine rural school districts in the same 

Regional Educational Service Agency (RESA) office in central Georgia. Two university faculty 

taught in the project. One faculty member was a mathematics educator in the College of 

Education with a second faculty member from the mathematics department. Faculty members 

co-planned and co-taught classes. Participant selection was based on principal recommendation. 

Teachers from 15 schools enrolled in the project. Project design was based on Georgia’s K-5 
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mathematics specialist endorsement requirements in four content areas: Number and Operations, 

Data Analysis and Probability, Geometry and Measurement, and Algebra. For the purposes of 

this paper, only Number and Operations content mastery will be discussed. The Number and 

Operations course was 60 face-to-face contact hours with approximately 20 hours of 

instructional time dedicated to overarching pedagogy concepts for teaching mathematics (e.g. 

defining problem solving, assessment strategies, teaching all children mathematics) and 40 hours 

to Numbers and Operations content. Content delivery consisted of five instructional days during 

the academic year and a two-week summer institute. Thirty-one teachers attended the initial 

information session and completed a pretest. Twenty-three (23) teachers completed the Numbers 

and Operations course and the posttest, resulting in 23 matched pairs. Teachers’ content 

knowledge was pre-and posttested using a project developed and state approved Number and 

Operations test. Each test consisted of 14 identical content items testing fraction, decimal and 

percent conversions; place value; base 10 representations; alternative (non-traditional) operations 

algorithms; inverse operations; and misconceptions. Possible scores ranged from 0-100 points. 

An item by item correct versus incorrect percentage test analysis was conducted to determine if 

there were content misconceptions for both the pretests and posttests. Test items included items 

involving numbers and operations (e.g. place value and computation) and others similar to the 

following: 

1. Provide 2 different pictorial representations of the number 367 without using numerals. 

2. Use an alternate algorithm to find the difference between 277 and 456 and explain it. 

3. Identify if each solution is correct or incorrect. Explain why the method is correct or 

incorrect. ,
/
 x 4 = 4

5,
 

Findings	

Analysis of the Montana project (paired t-test) found significant differences in elementary 

teacher’s content knowledge for both cohorts. As evidenced in Table 1, gains in posttest score 

comparison to pretest score for each individual teacher were determined to be significant if the 

posttest gain was greater than one-third of the pretest standard deviation (SD): 

Post>Pre+(1/3)*SDPRE where the pretest standards deviation was equal to 6.99. Thirty-three 

(84.6%) of 39 teachers made significant pretest to posttest gains (Shaw, 2013). Year 2 

participants used the same test, resulting in 19 matched pretest and posttest total scores. Using 

the same benchmark for gains, ten (55.6%) teachers made significant pretest to posttest gains in 
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content knowledge (Shaw, 2014). See Table 1 for details. Gains in content knowledge are only 

one aspect of teacher growth; additional qualitative and quantitative evidence demonstrated 

increased knowledge of standards and acquisition of leadership skills.  

Table 1  

Change in Content Knowledge (Years 1 and 2) 

Cohort N Mean Std. Dev. t statistic Pval 
Pretest Y1 39 30.69 6.99 7.93 < 10-3 

Posttest Y1 39 37.46 6.87 

Pretest Y2 19 33.21 4.98 2.18 0.0215 

Posttest Y2 19 35.74 4.68 
  

The Georgia Southern University project pretest mean was 61.71 with a posttest mean of 89. 

A Wilcoxon Signed-Rank test found a significant difference in pretest and posttest scores 

(p<0.01). Data analysis using the MSP-required MSPTCK test found significant pretest to 

posttest gains for all 23 teachers. Pretest misconceptions were focused in the following three 

areas: (1) fraction, decimal, percent conversions especially in the areas of repeating decimals 

versus terminating decimals (e.g. ⅔ is not the same decimal, fraction and percent as 66%) 

[N=21]; (2) non-traditional algorithm solution explanations to problems using the four basic 

operations (e.g. estimation [N=9], mental math [N=20]); and (3) finding and correcting students’ 

misconception errors on specific tasks (e.g. division using a non-traditional algorithm [N=19]). 

Posttest data analysis found teachers still had difficulty with (1) fraction, decimal, percent 

conversions especially in the areas of repeating decimals versus terminating decimals (e.g. ⅔ is 

not the same decimal fraction and percent as 66%) [N=18], and finding and correcting students’ 

misconception errors on specific tasks (e.g. division using a non-traditional algorithm [N=6]). 

Overall, teacher content knowledge increased as a result of the project. However, teachers 

continued to have several misconceptions about mathematics at the end of the course. 

In general, both models accomplished their goal of positively impacting teacher content 

knowledge. The mode of delivery did not impede content knowledge growth.  
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Recommendations 

The Montana STREAM and Georgia Southern University projects support recommendations 

found in the NCTM Professional Standards and CBMS MET II that in-service teachers need 

continued professional development in mathematics content. Both projects confirmed this need 

by documenting that some participating teachers lacked content knowledge of number and 

operations. Both projects helped these elementary teachers gain content and pedagogical 

knowledge through learning and collaborating with colleagues. In-service teacher 

misconceptions imply preservice content and pedagogy courses need to continue to focus on 

more than procedural fluency. For example, in-service teachers continue to struggle with 

conceptual understanding with non-traditional algorithms. Both projects implemented effective 

professional development criteria and were successful using these components: content-driven; 

unfolded over an extended period of time; integrated research-based teaching strategies and 

active learning; and encouraged teachers to collaborate and continue interacting with each other 

beyond the project. Both projects support the premise that professional development offered 

through differing delivery models can impact in-service teacher content learning. Both models 

had similar and different implementation challenges. Similar challenges were recruitment and 

retention (time commitment issues) over the course of each project. The face-to-face project 

(Georgia Southern) encountered attendance issues due to lack of substitutes during the academic 

year, teachers having to commit to two weeks of summer instruction and teachers completing all 

endorsement assignments in a timely manner while working full-time. The blended model 

(Montana) had some teacher turnover as well as administration changes. Both impacted the level 

of implementation of the teachers’ strategic plans. Overall, these two projects document that 

mathematics teacher learning is a career-long process. Using either modality of delivery, the 

professional learning is most effective when based in mathematics content. Developing in-

service elementary mathematics teacher content knowledge continues to be an area of need and a 

rich environment for research.  
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This paper reports initial findings about teachers’ interactions with an online professional 
development module designed to enhance their understanding of measurement concepts 
foundational to the number line through experiences with continuous quantities. Designing an 
online interface, which takes a problem-solving approach while at the same time, provides 
guidance for teachers was non-trivial and led us to consider design features available through 
the technology. The results suggest teachers gained insight into the number line and highlighted 
the inclusion of human interaction as valuable for their learning, important considerations 
informing the module’s continued development.	
	

Theoretical Framework and Related Literature	
One of the few formal activities in which teachers interact with each other and learn new 

content and pedagogy is in professional development (PD). Effective PD is generally agreed to 

include the following features: (a) content focus, (b) active learning, (c) coherence with other 

expectations and goals, (d) sustained duration, and (e) collective participation of teachers from a 

school, district, and/or grade level. However, relatively few teachers appear to be offered 

professional development opportunities that can be characterized as meeting these criteria in a 

meaningful way (Desimone, 2009; Desimone et al., 2002; Garet et al., 2001; Hill, 2004). 	

In-person PD is valuable for building relationships and content-focused collaborations, but 

online PD affords teachers additional opportunities to engage in collaborative, work-embedded 

PD, as well as to expand their interpersonal network. Online PD is flexible in scheduling, and 

avails sources of content and pedagogy beyond the local context. Online educational resources 

are already widely available. Teachers access popular, free sites such as Teachers Pay Teachers 

and Pinterest to acquire lessons or Khan Academy to review mathematics content. The problem 

is that while options like these are accessible, they are not designed to support development of 

high-quality teaching. Online PD has the potential to provide meaningful support to teachers, 

particularly when that PD environment is easy to access and meets the needs of teachers in 

locations that do not have in-person access to valuable resources. Although the popularity of 

online PD resources and teacher networks is growing rapidly, little is known about emerging 
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cloud-based computing practices for teacher PD. More research is needed to identify best 

practices for the design and implementation of online teacher PD models (Dede et al., 2009).	

Study into the human experience in the workplace with the integration of technology began 

in the late 1950s. Through these experiences, there emerged the notion that technology should 

not be the controlling factor in determining the workplace environment for employees, a 

construct central to the socio-technical theory (Mumford, 2006). The socio-technical theory 

describes the need for “the joint optimization of social and technical systems” (Mumford, 2006 

p. 321), where human needs are not forgotten when technology is introduced, and the social and 

technical are equally weighted in the workplace. Within the context of designing and delivering 

online teacher PD, it is important to consider humanistic needs when using technology as a 

platform for teacher learning.	

The PD Module	
To meet the complex needs of teachers within their local contexts and provide them with 

meaningful learning experiences, a team of mathematics educators at the Curriculum Research & 

Development Group developed an online PD module, A Little Professional Development about 

Big Ideas (ALPBI): Measurement Foundations to the Number Line. Based on a series of lessons 

from the Measure Up (MU) curriculum research and development project (Dougherty, 2008), the 

module includes four investigations focusing on measurement concepts foundational to the 

number line. In US elementary curricula, measurement is typically treated as an isolated topic, 

and measurement tools are used in rote fashion, often without understanding of the concepts that 

they embody (Clements & Battista, 1992). MU is based on an innovative approach developed by 

a team of Russian mathematicians, educators, and psychologists led by Davydov and El’konin, 

and grew out of Vygotsky’s cultural-historical theory. MU uses measurement as the context to 

study foundational concepts in mathematics (Venenciano & Dougherty, 2014), and requires the 

use of continuous quantities, such as area, volume, mass, and length. MU begins with a non-

numeric approach using generalized measurement concepts to develop students’ quantitative and 

numeric reasoning. Although virtual manipulatives that mimic real world tools, such as standard 

rulers and calibrated beakers, exist to support the teaching of measurement concepts, these often 

do not provide teachers and students with opportunities to explore and develop understandings of 

the concepts that underlie these tools and their calibrations. We adapted a series of MU lessons 
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for teachers to engage in measuring of continuous quantities and inquire about concepts, like unit 

and the number line, through the investigations.	

In addition to the innovative mathematical content, the module was designed with 

educational and design features to highlight pedagogical considerations and enhance the PD 

experience. The module was designed to capture the inquiry and problem solving processes that 

would otherwise be modeled by facilitators to engage participants in a face-to-face session. To 

this end, the design goals were to 1) engage teachers in an inquiry approach; 2) encourage 

teachers to actively do mathematics; 3) provide opportunities for reflection; and 4) present 

mathematics via problem solving. To address these goals, we turned to interactive features 

afforded by online, cloud-based technology, Google docs. We included open-ended question 

prompts and hyperlinks to other documents, which provided insight into each topic under 

discussion. Hyperlinks also linked icons and words within the module to other docs in which 

content and instructional considerations (e.g. concurrent representations) were highlighted. A 

reader-friendly, conversational text also guided the reader through the module. 	

In this early phase of our research, we examined how teachers interacted with the educational 

and design features to inform the development of the module. Our research questions are: (a) 

How does the ALPBI design support teachers’ mathematical thinking about the number line? and 

(b) How do teachers interpret ALPBI as PD? Teachers’ interactions with our module will 

advance understanding of the teaching and learning of mathematics in technologically rich PD 

environments and provide information for continued development of the module. There is 

inadequate research available for PD planners seeking best practices for the design and 

implementation of online teacher PD models (Dede et al., 2009; Prestridge & Tondeur, 2015). 

Our project, drawing from the socio-technical model (Ropohl, 1999), seeks to address these 

influential factors and tensions in relation to the online PD design. 	

Methodology	
Seven elementary classroom and resource teachers from six different schools were recruited 

to individually read through and complete the investigations in the ALPBI module prototype 

within a two-week period. All of the teachers were experienced with teaching elementary 

mathematics; three were classroom teachers, and four served as school or state-level teacher 

leaders who provided coaching or instructional support for teachers. Initial communication with 

the teachers was through email, with no face-to-face orientation prior to their interactions with 
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the module. This was intentionally done to see how teachers would work through the module 

with minimal direction and guidance. They were provided with specialized materials (e.g., spring 

scales) that might not be typically found in classrooms, but were expected to find everyday 

materials needed to complete the tasks. Teachers were then emailed the link to the module and 

given two weeks to work through its four investigations. 	

Prior to working on the module prototype, the teachers completed an initial survey, which 

asked them about their current understanding of the number line and how they saw it used in 

instruction. Following completion of the ALPBI module, the teachers completed a post-survey 

that contained items in which they could rate parts of the module and their perceived changes in 

their understanding of the number line on a Likert scale. On the post-survey teachers were also 

asked to provide a brief written response about the overall value of the module as an option for 

PD. Additionally, the teachers were placed in two groups according to their availability and each 

group participated in a 1-2 hour focus group meeting with the research team. Since this was the 

first face-to-face meeting with the teachers, some time was spent providing the purpose and 

background of the module and the project. Using their post-survey responses as a catalyst, 

teachers discussed their thoughts and experiences with the module. The focus group meetings 

were audio-recorded and transcribed, and researcher field notes were taken during the meeting. 

Both the audio-recording transcripts and the notes were reviewed to provide supporting evidence 

and further insight into the survey responses. Analysis of the data was done after the focus group 

meetings were completed. The qualitative responses from the pre-survey were coded and 

analyzed collectively followed by the coding of the post-survey responses according to their 

analytical properties (Charmaz, 2006). The codes were developed inductively from the data and 

categorized into themes by two researchers who first coded survey responses independently and 

then compared their analyses. The researchers discussed discrepancies in the coding until a 

resolution was reached. Post-survey ratings were used for contextual understanding when 

interpreting qualitative data from open-ended items and focus group discussions. 	

Findings	
Results from the pre-survey	

The teachers responded to two questions on the pre-survey: 1) What is a number line? and 2) 

From your knowledge and experiences, how is the number line used in mathematics instruction? 

The vocabulary and mathematical ideas that were included in the responses indicated teachers’ 
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notions of the number line and their thoughts on the use of the number line during instruction. 

The findings suggest a focus on the number line as an object or tool, with its physical features 

highlighted (e.g. a line marked off with numbers). Three teachers discussed the number line’s 

relationship to linear measurement, including comments such as, “A number line is a length 

model, each number represented by its length from zero” and “It could be a precursor to 

measuring lengths.” One teacher described the number line as “a continuum with numbers,” 

while another wrote that it was “a representation of continuous numbers.” Since neither clarified 

what was meant by “continuous” or “continuum,” the researchers are uncertain about the 

teachers’ understanding of the number line in this respect. In terms of classroom instruction, 

teachers saw that the number line could be used as a tool for counting or computing, for 

measurement, and to highlight number relationships.	

Results from the post-survey and focus groups	
The researchers met with the teachers in two focus groups, according to their availability and 

location. One group consisted of three teacher leaders, while the other group included one 

teacher leader and three classroom teachers. Two of the classroom teachers implemented the 

investigations as lessons with their first-grade students. They described initially feeling 

frustrated, however, later came to view the experience as a means for deepening their 

understanding of the concepts in the module. One teacher shared, “I really like that, being able to 

visualize and then you see it hands on. You’re actually doing it, pouring it, so they can actually 

see it. Whereas if they just see the number line, you tell them, okay count up or whatever.” 	

All seven teachers completed the post-survey and reported that they had read at least 90% of 

the module text. Teachers rated their perceived change in understanding of the number line on a 

Likert scale of 5 (significant improvement), 4 (some), 3 (unsure), 2 (very little), and 1 (none at 

all). All but one teacher reported significant or some improvement in their understanding of the 

number line as a result of using the module. In describing the significant improvement, the 

teacher wrote that the module “deepened my understanding of the number line beyond the basic 

add/subtract … I never thought of [measurement] as an abstract concept … when dealing with 

representations of length, volume, and weight.”	

Teachers’ perceptions of the overall value of the module as an option for professional 

development are characterized by three themes: 1) Self-improvement/Learning; 2) Instructional 

Strategies/Teaching; and 3) PD delivery. Overall the teachers found completing the PD module 
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as valuable for their professional learning. Several responses highlighted instructional insights 

afforded as a valuable part of their interactions with the module (e.g., “This module definitely 

gave me a different and innovative approach to teaching the number line,” and “I would have 

loved to see potential misconceptions so that could be addressed by pre-planning investigations 

and questions to ask students during the debrief sessions.”). Furthermore, two teacher leaders 

discussed aspects of the PD experience thought to be important for teacher learning and success 

with the module. One commented, “I think that this module is a great option for professional 

development... the module would be best done if someone were facilitating the modules through 

a data teams (or else having teachers do the module together in a small group, if a facilitator is 

not an option).” Another teacher leader highlighted the value of collaboration, remarking, “It 

might be better for teachers to complete this module with a partner. It would be great to share 

insights and/or wonderings with someone regarding the investigations.” Other ideas for 

improving the module included the use of visual images, (e.g. classroom videos, drawings) to 

facilitate teachers’ understanding of the pedagogical considerations discussed and modeled by 

the module. One teacher stated, “What if we take video of a lesson like this and use that as part 

of the PD? So that teachers can see that’s what this lesson is supposed to look like, or that’s the 

kind of responses you might be able to have.” Another teacher added her own illustrations on her 

copies of the module, “because I had to understand what was going on, what was required.” 	

Discussion and Implications	

As online teacher PD continues to grow in popularity, more research is needed about the 

design and implementation of online PD models that provide contexts for teachers’ meaningful 

interactions with new content and pedagogy (Dede et al., 2009). Our approach to online PD 

combined innovative mathematical content with design features made available by the 

technology that modeled instructional approaches consistent with inquiry and problem solving. 

Teachers found the experience of working through the tasks valuable in advancing their 

understanding of the number line, and interactions with others (e.g. with a partner/facilitator) as 

important for enhancing their learning while they worked through the online interface. Although 

online PD affords a myriad of opportunities for professional learning, preliminary findings from 

this study suggest the importance of in-person discussions and active engagement with the 

mathematical tasks in conjunction with the online experience. Our findings suggest incorporating 

social interaction with affordances of the technology to enhance teacher learning under both 
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social and technical conditions (Ropohl, 1999). In addition, two teachers found the experience of 

implementing some of the lessons with their own students challenging, causing them to raise 

questions such as “What is the thinking behind this?” and “What do I want them (students) to get 

out of this?,” but at the same time valuable for their own professional learning. This supports the 

notion of teacher development occurring not only through structured PD, but also in other 

professional experiences as well, including within their practice (Borko, 2004; Desimone, 2009). 	

Finally, although our research intent was not to compare differences in teachers’ interactions, 

we noted qualitative differences in the conversations depending on teacher roles. The classroom-

based teachers tended to focus on instructional insights afforded them at a personal level through 

interacting with the module, whereas the resource teachers focused on teacher PD at a general 

level and tended to address the delivery of the module. The results of this study present several 

considerations we, as curriculum developers, will take into account as we continue the module’s 

development.	
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To develop graduate student instructors’ (GSIs) skills and abilities as collegiate mathematics 
instructors, researchers at two universities implemented a peer-mentorship model where 
experienced GSIs completed a 15-week professional development (PD) to learn how to mentor 
novice GSIs in teaching undergraduate mathematics. Using pre-survey, post-survey, and semi-
structured reflective interviews, we studied changes in eleven mentor GSIs’ perspectives on 
teaching and learning practices and what aspects of the mentor PD were deemed valuable by the 
mentors. Results suggest that this mentor PD, as a peer-mentorship model, helped GSIs 
deconstruct the dichotic mathematical paradigm of statements being true or false when discussing 
teaching.  
 

A key ingredient in a successful collegiate mathematics department is the “effective training 

of graduate teaching assistants” (Bressoud, Mesa, & Rasmussen, 2015, p. 117). This training is 

crucial because mathematics graduate student instructors (GSIs)1 serve as instructors of record for 

hundreds of thousands of undergraduate mathematics students each semester (Belnap & Allred, 

2009) and significantly impact the quality of collegiate mathematics instruction across the United 

States of America. Despite their prevalent role as instructors of undergraduate mathematics, GSIs 

typically lack guidance and support to teach undergraduate students effectively (Speer & Murphy, 

2009). In order to address this critical need for early support in GSIs’ development as effective 

teachers, this study generated and implemented a mentor professional development (PD) at two 

American universities to develop experienced GSIs into mentors for novice GSIs (protégés). This 

paper explores the effect of a mentor PD2 on mentor GSIs’ views of teaching and learning. 

Related Literature 

GSI Guidance and Support 
In K-12 teacher education, the critical role of student teaching with a mentor teacher has been 

recognized as a vital precursor to fully instructing a course (Council for the Accreditation of 

Educator Preparation, CAEP Standard 2). At the collegiate level, no such standard precursor 

exists across doctoral granting institutions (Speer & Murphy, 2009). This is due, in part, to the 

wide variety of roles graduate students may be assigned, such as tutoring, grading, recitation 

instructors, or instructors of record. Moreover, the varied and limited resources within 

mathematics departments often present unique challenges to providing GSI support.  
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Although mathematics faculty members and course coordinators may offer general advice 

about teaching to graduate students, rarely is this advice individualized enough for the GSI to 

justify and reflect on their pedagogical decisions (Speer et al., 2014). This is where a mentor can 

be helpful by offering specific advice and justifying that advice by articulating pedagogical 

decisions. Many universities have used faculty as mentors for GSIs, however Johnson and 

Nelson (1999) found that such relationships are ethically complicated and multifaceted because 

of other hegemonic roles faculty must play, such as doctoral advisors and qualifying exam 

evaluators. We posit that to be genuinely aware of the individualized pedagogical decisions 

requires a mentor closely in tune with a protégé’s current experiences. To that end, we focused 

on a mentor PD for experienced GSIs to guide and support protégés. 

Mentoring GSIs 

Research has indicated that mentoring has social and cultural benefits if mentor GSIs are 

focused on helping protégés learn how to teach. Johnson and Nelson (1999) indicate that 

mentoring is central to “quality graduate education” (p. 205), a key component of a successful 

mathematics department (Bressoud et al., 2015). Crisp and Cruz’s (2009) meta-analysis of 

mentoring literature from 1990 through 2007 found that certain subgroups (minorities and 

females) benefited greatly from peer mentoring, as mentors offer support to socialize 

professionally, work, navigate, reflect on academic discourse, and help alleviate stress within 

doctoral programs. Zaniewski and Reinholz (2016) looked at mentoring from a cultural 

perspective of identity in a peer mentoring program and found similar positive psychosocial and 

academic interactions resulting in friendships that generated a community of practice 

(Kensington-Miller, Sneddon, & Stewart, 2014) amongst peers. Such results are desired within 

mathematical graduate doctoral programs. Thus, the literature supports the design and 

implementation of peer-mentoring for GSIs, yet raises the question: How do we mentor the 

mentors? 

Mentoring Curricula 

Although teaching experience is necessary, it is not sufficient for mentoring because mentors 

need to understand their role and purpose in facilitating meaningful pedagogical decision-

making conversations with protégés (Rogers & Steele, 2016). Despite a small body of literature 

surrounding structuring mentor PD curricula (Crisp & Cruz, 2009), we note Boyle and Boice’s 

(1998) seminal work on mentoring both novice faculty and novice GSIs with tenured faculty 
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where they considered mentoring as the “cousin of faculty development” (p. 158). These 

researchers compared spontaneous mentoring (talk to the mentor if there are problems) and 

systematic mentoring (meeting regularly every week) and found that systematic mentoring was 

more effective in supporting GSIs and faculty because the mentor could not prepare 

appropriately when it was spontaneous. Boyle and Boice also observed the topics that dominated 

mentor meetings in decreasing order of frequency were (1) discussions of undergraduates, (2) 

teaching styles, (3) teaching-related goals, (4) grading issues, and (5) course preparation.  

Boyle and Boice’s (1998) results informed the framework of our mentor PD because all five 

frequented topics could be discussed within the mentor PD through two main responsibilities: 

observing protégés teach and running small group protégé meetings systematically (not 

spontaneously). Thus, our mentor PD curriculum revolved around observing protégés (including 

post-observation discussions) and facilitating small group discussions. This study examines the 

impact of a 15-week mentor PD on experienced GSIs via the research question: How did the 

mentor PD change mentors’ perceptions of student behavior, student learning, and/or effective 

teaching? 

Method 

Participants 
Experienced graduate students at two universities applied and were selected to be mentors by 

the researchers based on their teaching experiences (aptitude for implementing student-centered 

techniques), their pedagogical accolades (teaching awards and student evaluations), and their 

desire to help novice GSIs to improve teaching at their university (essay responses were 

required). The number of participants was determined by the average size of each university’s 

mathematics GSI program. Eleven mathematics doctoral candidates were selected to participate 

in the mentor PD seminars (four from one university and seven from another).  

Mentor PD Curriculum 
The goal of the 15-week mentor PD was to equip the eleven experienced GSIs to be effective 

peer-mentors. The participants and a mathematics education researcher met for 50 minutes once 

a week to discuss the responsibilities of the mentor as well as to generate frameworks and 

perspectives necessary for mentoring. Revolving around observing protégé GSIs and facilitating 

bi-weekly small group meetings (one mentor with four protégés), Table 1 describes the mentor 

PD curriculum of this study: 
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Table 1. 

Mentor PD Curriculum Topics in Order of Discussion 

Weeks Topic Description 
1-2 Aligning lesson goals, assessments, 

and mathematical tasks 
Reviewed teaching-related goals as well as 

designing and aligning lesson plans. 
3-6 Designing, organizing, and 

implementing GSI observation 
protocol (GSIOP)* 

Mentors used the GSIOP to observe other 
mentors’ classrooms to become familiar with 

the GSIOP. 
7-8  
&  

13-14 

Facilitating post-observation 
discussion, including how to support 

protégé development as teachers 

Discussed structures to provide constructive 
criticism for post-observation discussions via 

role-playing and video-based scenarios. 
9-10 Designing, organizing, and 

implementing small group meetings 
Discussed topics, structure, and protégé needs 

during protégé’s first year of teaching. 
11-12 Facilitating small group meeting 

discussions 
Discussed productive discourse and analyzed 

small-group scenarios to limit mentor 
opinions 

15 Critical reflection during small 
group meetings 

Discussed critical reflection (Brookfield, 
1995) to help protégés solve curricular 

problems.  
* The GSI Observation Protocol (GSIOP) was modified from the MCOP2 (Zelkowski, Gleason, 
& Livers, 2016) and collegiate teaching observations.  
 
Although researchers collected rich observational data from the mentor PD, space limitations 

mandated this paper remain focused on the results that would answer our research question. 

Mentor PD Data Collection 
At the beginning and end of the mentor PD, the eleven mentor GSIs answered a survey to 

examine their attitudes, experiences, and conceptions about teaching collegiate mathematics. We 

modified Jong, Hodges, Royal, & Welder’s (2015) Mathematics Experiences and Conceptions 

Surveys to focus on the tertiary instructors. The pre- and post-surveys shared a group of 

questions that asked the mentors to rate how strongly they agreed with statements in three 

categories: (a) beliefs about students (15 statements), (b) teacher characteristics (11 statements), 

and (c) lesson design (3 statements). On a scale of one to five, with one being strongly disagree 

and five being strongly agree, participants rated their agreement with statements such as: (a) 

students should use multiple ways to represent concepts and solve problems (beliefs about 

students), (b) as a teacher I provide wait time and think time regularly (teacher characteristics), 

and (c) the structure of my lesson must be well organized to effectively achieve its goals (lesson 

design). We analyzed the mentors’ pre- and post-survey responses to address our research 
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question. After the conclusion of the mentor PD, an external evaluator conducted 1-hour, semi-

structured reflective interviews with each mentor. The mentors were given a copy of their pre- 

and post-survey responses and asked to elaborate on what they saw in their own responses to 

triangulate the data. Mentors’ responses about how and why their attitudes changed throughout 

the mentor PD helped to answer our research question. 

Mentor PD Data Analysis 

We first examined the results of the pre- and post-survey questions. This quantitative analysis 

informed the design of the semi-structured reflective mentor interviews, which we qualitatively 

coded relative to the mentor’s responses to the attitudes, experiences, and conceptions on 

teaching questions. For all 29 pre and post questions, t-tests were used to determine variance 

before and after the mentor PD. Aggregate quantitative analyses of the pre- and post-survey data 

were shared during the semi-structured interviews to help answer the research question.  

Results 

Paired sample t-tests were implemented on all 29 pre and post survey questions to look for 

variance (N=11 with alpha=5%). Although, no variance was significant (which may be due to 

the limited number of participants), a few descriptive statistics on change in mean offer insight 

into how the mentor PD affected specific mentors’ attitudes. Due to limited space, we discuss the 

survey question with the greatest change in attitude. Mentors attitudes that “students’ success in 

mathematics depends primarily on how hard they work” had the largest average negative value 

change after the mentor PD (ΔM=-0.64, ΔSD=1.43) and was almost significant (p = 0.081). This 

indicates that, on average, mentors agreed less with this statement after the mentor PD. 

In the reflective interviews, nine of the eleven mentors did explicitly discuss their negative 

change in attitude on the survey relating student success and hard work. One mentor said:  

When I first took this [pre-survey], I strongly agreed because it sounded right, the way it 

should be, but what caused me to change was the word ‘primarily’ because success in 

mathematics is in part how hard they work…but a good teacher certainly makes a difference, 

the resources available certainly makes a difference. If not, we are assuming students…are 

lazy and just don’t work hard, which is not true in my opinion. 

A second mentor corroborated this perspective in their interview by directly connecting his 

negative change in attitude to the mentor PD: 
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I probably changed my answer after the seminar because I had seen poorer examples of 

instruction in the mentor PD, which leads me to believe that, despite what I would like, the 

quality of instruction plays a role in how well they learn the subject material.  

Another mentor focused on deconstructing the word success: 

The hard part for me to really piece together about this question is ‘student success’ in 

mathematics. If I have a student who comes in with really strong [mathematical] background 

and aces all the homework, aces all the exams, versus the student who improves greatly but 

does not get as good of a grade, what is that in terms of success? 

Altogether five of the nine mentors discussed disagreed with the word success, three of the nine 

disagreed with the word “primarily” (citing teaching as another important factor), and one of the 

nine unpacked the notion of hard work, arguing that there were differing views of hard work that 

can lend themselves to successful mathematical understanding. Fundamentally, during these 

interviews, mentors were critically reflective (Mentor PD, week 15) as they deconstructed the 

meaning of certain words such as “hard work”, “primarily”, and “success” that they took for 

granted prior to the mentor PD.  

To investigate what aspects of the mentor PD may have contributed to this changed, we 

asked mentors to specify what parts of the mentor PD they considered most valuable in critically 

reflecting and deconstructing these terms (i.e. hard work, primarily, and success). Ten of the 

eleven mentors referenced facilitating post-observation discussions (Weeks 7-8 and 13-14) 

where mentor GSIs observed each other, analyzed video-based scenarios, and discussed written-

case studies where mentors debated about strategies for identifying and communicating ways for 

protégés to improve. This specifically speaks to mentors appreciating the mentor PD as a means 

to practice productive discourse with protégés. 

Discussion 

In sum, our study provides valuable information about how a peer-mentorship model 

engaged mentor GSIs’ perspectives on teaching and learning. Although the t-tests indicated no 

significant variance in mentors’ perspectives of teaching and learning (alpha=5%), the reflective 

interviews indicated qualitatively that the mentor PD resulted in mentors thinking about certain 

terms, such as “success”, as relative to courses and students they were currently teaching. Thus, 

mentors were able to deconstruct the dichotic paradigm (true versus false) prevalent in 

mathematical statements but not mathematics education. When mentors provide constructive 
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feedback to protégés after observing their classroom teaching, it is crucial that they address 

teaching concerns with subjective understanding of words such as “success” so as not to indicate 

to protégé GSIs that there is an absolute correct way of teaching or defining student “success”.  

Implications for Research 
This study contributes to the field’s knowledge of GSI guidance and support by exploring 

how this mentor PD (part of a peer-mentorship model) can engage experienced GSIs’ 

understanding of mentorship, teaching, and learning. Our research demonstrated that the mentor 

PD did promote GSIs’ ability to justify their pedagogical understanding of certain terms. Their 

choice to value discursive facilitation and their ability to deconstruct terms such as “primarily” 

and “success” demonstrates they were able to consider multiple factors needed to reason through 

pedagogical decisions, a crucial area of concern in recent research (Rogers & Steele, 2016). 

Implications for GSI Programs 
The mentor GSIs’ value of facilitating discourse in protégé post observations is an ideal way 

to begin in developing peer-mentoring programs for GSIs because from this discourse stems the 

foundation of a community of practice amongst GSIs within mathematics departments. In their 

research on how mathematics teaching practices shift undergraduate instructors’ academic 

identities, Kensington-Miller et al. (2014) emphasize the need for a community of practices for 

an improvement in teaching practices to take place. These researchers define a community of 

practice as: 

a place of collaborative inquiry where various approaches to teaching can be tested 
through a reflective sharing process . . . . [A community of practice] can contribute to 
deeper levels of awareness and achieve new learning that can, in turn, lead to significant 
change. (Kensington-Miller et al., 2014, p. 829) 

To work through reflective sharing for achieving awareness, a community requires a safe 

environment with a knowledgeable facilitator for productive discourse, which was at the center 

of the mentor PD and valued by the mentor GSIs. Thus our data corroborates and aligns with 

prior research (Boyle & Boice, 1998; Kensington-Miller et al., 2014; Smith & Stein, 2011) by 

underscoring the need for a mentors to be skilled at facilitating productive discourse in a 

collaborative environment and systematically organizing mentor meetings in hopes of generating 

a sustainable community of practice. 

Endnotes 
1 GSI was used instead of TA (Teaching Assistant) because GSI targets the specific set of graduate 
students who are full instructors of record. 
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2 The implementation of this mentor PD was supported by a National Science Foundation 
collaborative grant at two universities (NSF IUSE GRANT # 1544342 &1544346). 
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Previous research on emotions in mathematics education centered on students doing 
mathematics. This cognitive perspective limits emotions to only the individual and does not 
consider the influence of interactions with others while learning and doing mathematics. A 
sociocultural perspective on emotion needs to be considered to move the field forward. The 
sociocultural perspective on emotion creates a space where the emotions of prospective and in-
service mathematics teachers, as well as classroom environments, can be investigated. In this 
paper, I discuss the important constructs of the sociocultural perspective on emotion and 
describe the perspectives potential in mathematics education research.  
 

Becoming a teacher is a complex process influenced by internal and external factors (Borko 

et al., 1992). One factor researchers have focused on is the influence of emotions on mathematics 

teachers’ professional development (Hodgen & Askew, 2007). Previously, most research on 

emotions centered on students doing and learning mathematics (McLeod, 1992; Philipp, 2007). 

This work has provided descriptions and understandings of students’ emotional states as they 

solve mathematical problems and how emotions influence problem-solving (Goldin, 2014). 

Research on the influence of prospective teachers’ emotional experiences on their decision-

making processes, however, are few. Researchers have found the emotional experiences had 

during teacher preparation coursework motivates prospective teachers’ decisions to use research 

based practices (Gomez, 2016). Mathematics educators need to consider the emotions of 

prospective teachers because mathematics learning elicits particular emotions from both students 

and teachers due to the relationship one has with the content (Williams-Johnson et al., 2008).  

Research on emotions can be described as using either a cognitive or sociocultural 

perspective. The cognitive perspective on emotions has dominated mathematics education 

research (see McLeod’s (1992) and Goldin’s (2014) review of literature) with few researchers 

using a more sociocultural approach (e.g. Hodgen & Askew, 2007). I argue a sociocultural 

perspective on emotion could provide new insight into the phenomenon of becoming a 

mathematics teacher and the decision-making processes of prospective teachers. The purpose of 

this paper is to demonstrate the potential of a sociocultural perspective on emotion in 

mathematics education. I argue this by highlighting three constructs that make up an individual’s 

emotionality (Denzin, 1984): (1) emotional labor, (2) feeling rules, and (3) emotional 
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geographies (Hochschild, 1979, 1983; Hargreaves, 2001). Examples of these constructs in 

mathematics teacher education are provided from a study on the emotional experiences of 

prospective elementary teachers (Gomez, 2016). First, I emphasize the differences between a 

cognitive perspective and a sociocultural perspective on emotion. 

Cognitive and Sociocultural Perspectives of Emotion 

A cognitive perspective focuses on the individual’s emotion while doing and learning 

mathematics with minimal considerations of the social other. Emotion is only considered to be “a 

feeling or state of consciousness” (Philipp, 2007, p. 259). Using a cognitive perspective centers 

around the feelings expressed by the student while doing mathematics (e.g. Goldin, 2014; 

Martinez-Sierra & Garcia-González, 2016). The goal of the researcher then is to understand and 

theorize the emotional experience and how the emotions arise after a stimulus, usually a 

mathematics problem. For example, Goldin (2014) described affective pathways as being 

sequences emotions occur in when doing a task and was part of the individual’s affective 

architecture. He used affective pathways to explore the complicated patterns of emotions 

teachers and students exhibit during mathematical problem solving. Goldin (2014) argued 

researchers need to focus on “more complex descriptions of affective architecture” (p. 405) in 

mathematics education. The cognitive perspective is useful but limited because it is intended to 

only describe what elicits emotions and not how the emotional experiences influence the 

interactions with the social other. If we consider learning to be based on participation (Lave & 

Wegner, 1991) then the cognitive perspective on emotion is limited in its impact. 

Mathematics education research needs to go beyond the emotional reactions of students and 

teachers to understand how emotion influences the learning and teaching of mathematics. A 

sociocultural perspective involves the exploration of how emotions influence one’s interaction 

with agents, objects, or events and their work spaces (Denzin, 1984; Hochschild, 1983). 

Emotions occur in social spaces and emotional reactions are directed at something (Cross & 

Hong, 2012). More importantly, where these emotions are directed reflect the positioning of the 

individual in relation to a phenomenon (Hochschild, 1983). This necessitates defining emotions 

as more than just “states of consciousness” (Philipp, 2007, p. 259). Denzin (1984) considered 

emotion to be a major part of the interaction between individuals: 

Emotion is a lived, believed-in, situated temporally embodied experience that radiates 
through a person’s stream of consciousness, is felt in and runs through his body, and, in 
the process of being lived, plunges the person and his associates into a wholly new and 
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transformed reality—the reality of a world that is being constituted by the emotional 
experience. (Denzin, 1984, p. 66) 

Recognizing emotions are used as communicative tools, they change the ways individuals 

interact with one another and transform the phenomenological experience of both the one 

emoting and the social other interpreting the emotion.  

Mathematics education researchers have not taken up the sociocultural perspective of 

emotion explicitly, though previous studies have addressed emotions as part of a broader focus 

on students’ interactions and mathematics learning. For example, Cobb, Yackel, and Wood 

(1989), related the emotional acts of children to the norms constructed in the classroom. Cobb et 

al. (1989) became conscious of emotional acts as “essential features of the dynamic, self-

organizing social system that characterized life in the classroom” (p. 117). This revelation led 

Cobb and colleagues to further investigate these particular emotional acts when students were 

engaged in problem solving. Cobb et al. (1989) argued students’ emotions in the classroom “are 

not only warranted in specific situations but, at times, ought to occur” (p. 119). The social norms 

of the classroom played a vital role in the exploration of the emotional acts of the students. 

Methodology 

The sociocultural perspective on emotion guided a qualitative study into the emotional 

experiences of prospective elementary teachers learning to teach mathematics. The goal of the 

study was to investigate the identity development as mathematics teachers of four prospective 

elementary teachers through their narratives of emotional experiences in their practicums. The 

four participants (Anastasia, Elsa, Sally, and Kida) were interviewed three times at the 

beginning, middle, and end of their first practicum experience. They also meet four times as a 

small group to write and discuss their experiences. All interviews and small group meetings were 

video and audio recorded and transcribed. Narratives were coded based on the emotional 

geography (see below) enacted. For further details on methods and analysis see Gomez (2016). 

For this report, I focus on the experiences of Anastasia. Anastasia was a white 20-year-old 

female in her third year at a large research University. For her practicum experience, Anastasia 

was assigned to work in Ms. Blaileen’s 5th grade class once a week at Amos Moses Elementary. 

Emotional Labor, Feeling Rules, and Emotional Geographies 

Denzin (1984) argued research on emotional experiences need to focus on emotionality or 

the processes of emotion. Emotionality places an emphasis on how emotions influence social 
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interactions and decision-making. 

Emotionality arises out of inhibited, interpreted social acts in which the subject inserts 
self-conversations between the perception of experience and the organization of action. In 
these conversations, feelings directed to the self mediate action and interpretation. 
Emotionality becomes a social act lodged in the social situation. (Denzin, 1984, p. 224) 

Investigating emotionality can help in understanding the ways emotions are influencing an 

individual’s decision-making processes and is the basis of the sociocultural perspective of 

emotion because emotions occur in social spaces (Cross & Hong, 2012). In this section, I 

describe and provide examples of three constructs used to explore emotionality: Emotional labor, 

feeling rules, and emotional geographies. 

Emotional Labor  
 Individuals control his or her expressed emotions to be portrayed by the social other as a 

particular person (Hochschild, 1983). This identity management requires emotional labor, or “the 

act of trying to change in degree or quality an emotion or feeling” (Hochschild, 1979, p. 561) 

The institution one desires to work in can aid in developing the individual's beliefs about how to 

regulate one's emotions. Hochschild (1983) gave the example of airline stewardess in training:  

The pilot spoke of the smile as the flight attendant's asset. But as novices… move 
through training, the value of a personal smile is groomed to reflect the company's 
disposition… Trainers take it as their job to attach to the trainee's smile an attitude, a 
viewpoint, a rhythm of feeling that is, as they often say, 'professional.' (Hochschild, 
1983, p. 4, emphasis in original) 

The stewardesses saw this emotional regulation as necessary in order to be professionals. In 

education, Williams-Johnson et al. (2008) claimed teachers plan out, consciously or 

unconsciously, the emotions they will portray to students to better their own student-teacher 

relationships. Teachers, like other professions who serve public interests, participate in emotional 

labor and must learn to manage their emotions in the classroom (Schultz & Zembylas, 2009). 

During Anastasia’s time at Amos Moses, she was working with students who lived in a low 

SES area. She conducted her emotional labor when confronted by students living in poverty. She 

felt powerless and described the experience as “heart breaking.” Regardless, she felt it necessary 

to conceal how she really felt: 

You just have to like paint a smile on and pretend like you are okay with everything in your 
classroom… Some of the things that these kids go through, I literally cannot imagine. Like 
one kid comes to school in the same pair of pants every single day. And like, you can't—you 
can't grimace and be grossed out by it. You have to be okay with it. (Anastasia, Small Group 
Meeting 4) 
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Anastasia wanted to create a positive learning environment where students’ mathematics is 

challenged. Her emotional labor was necessary in constructing the learning environment she 

believed would be best for students to learn mathematics conceptually and develop the 

relationship she wanted students to have with mathematics.     

Feeling Rules 

Hochschild (1979) described feeling rules as "the social guidelines that direct how we want 

to try to feel may be describable as a set of socially shared, albeit often latent (not thought about 

unless probed at), rules" (p. 563). These rules are socially constructed from the individual’s 

interpretation of collective understandings of appropriateness or interpretations of what it means 

to act professional. Emotional labor is involved in following feeling rules (Hochschild, 1983). 

Teacher education programs, like the airline stewardess training, influence prospective teachers 

in the construction of feeling rules one needs to follow to be seen as a professional.  

Anastasia discussed explicitly three feeling rules she followed while at Amos Moses: (1) 

showing emotion will remove authority, (2) someone else's classroom is not the place to show 

particular emotions, and (3) modification and construction of feeling rules will continue as career 

begins. Anastasia's feeling rules were a consequence of becoming more aware of the complexity 

of being a mathematics teacher. By the third interview, when she asked directly about her 

emotional labor, Anastasia stated her ideas of professional behavior, including the feeling rules 

followed by teachers. She believed teachers lose their authority when they show emotions. "And 

when I think of a figure of authority I do not think of someone who's, you know, emotional." 

(Anastasia, Int. 3). Anastasia saw her feeling rule as positioning her as an authority figure.  

Anastasia’s other feeling rules were constructed as a consequence of the power struggle 

between her and Ms. Blaileen. Anastasia was determined to teach mathematics conceptually, but 

felt unable to because her desired way of teaching mathematics was not supported by Ms. 

Blaileen. Anastasia claimed it was not her place to push back and challenge the norms in Ms. 

Blaileen’s classroom. This included the emotions Anastasia felt while working with students.   

I tried to stay positive because I just did not feel that was the place for me to be frustrated or 
discouraged or embarrassed or any of those emotions. I thought that in someone else's 
classroom I kind of feel like you just have to suck it up and grin and bear, wait till you get 
home. You know what I mean? And I'm not really sure what the like protocol for that is. It's 
not really something we talk about in our classes. (Anastasia, Int. 3) 
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Anastasia believed because she was not the authority in the classroom she could not express 

particular emotions. Unsure of the protocol, Anastasia leaned on her teacher education program. 

This influenced Anastasia to concede her construction of feeling rules to when she became the 

authority and could learn from a community of professionals.  

Emotional Geographies 

Hargreaves (2001) developed the emotional geographies framework from an analysis of 53 

in-service teachers’ narratives describing the highs and lows about their relationships with 

students, parents, and other colleagues. The emotional geographies are the spaces in which bonds 

between people, objects, or events are created or broken depending on the similarities or 

differences of a purpose (moral geography), the work of the individual (professional geography), 

the power position (political geography), a social aspect (sociocultural geography), or proximity 

(physical geography) (Hargreaves, 2001). The five emotional geographies emerged from the 

narratives of teachers; however, the participants ranged in grade level (elementary, middle, and 

secondary) and content focus. In this study, all the participants were focused on the same grade 

level and the interviews were focused on the teaching of the same content (mathematics). Further 

refinement of the emotional geographies work is needed. For this report, I describe the 

characteristics of Anastasia’s emotional geographies based on the use of the general framework.  

Moral Geography. Anastasia's moral geography was characterized by her desire to teach 

conceptually. This was evident from the amount of frustration, anger, helplessness, etc. she felt 

when observing her mentor teacher teach and the pride and validation she experienced when 

seeing students' success in learning conceptually. Anastasia was particularly proud of her 

experience working with one student stating: “I think that seeing him succeed…and then the next 

day or the next week still being able to do that and build upon that. I mean that's what changed—

made it such a priority to me. To do the conceptual with kids” (Anastasia, Int. 3). 

Professional Geography. Anastasia's professional geography was characterized by: (a) 

Curriculum decision-making processes and (b) Being able to communicate the mathematics to 

students. Anastasia saw both of these aspects as being influential to her capacity to teach 

mathematics conceptually. She felt both aspects of her professional geography needed further 

development, and she saw her coursework as supportive of her desired trajectory.  

Political Geography. Anastasia's political geography was characterized by the power struggle 

between Anastasia and her mentor teacher and the influence on Anastasia's decision-making 
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processes. Many times, Anastasia made statements like, "at the end of the day it is her classroom. 

So I can only do what I think is best for the kids within her parameters." (Anastasia, Int. 3).  

Sociocultural Geography. Anastasia's sociocultural geography was limited to her awareness 

of gender issues. Reflecting on her experiences in elementary and middle grade mathematics, 

Anastasia referred to being selected for her school’s mathematics team and being the only female 

on the team. The social standing achieved by being good at mathematics at her school may also 

have validated her feelings of pride. This awareness only emerged when reflecting back on her 

own education, and not when discussing her experience at Amos Moses Elementary. 

Physical Geography. Anastasia's physical geography was characterized by her limited 

presence in the classroom. Anastasia felt her limited amount of time in the classroom was 

problematic for building a relationship with Ms. Blaileen. “I understand it would be hard to trust 

people that come into your classroom once a week” (Anastasia, Int. 2).  

Anastasia's emotional geographies characteristics demonstrate the ways her emotionality 

influenced her ways of thinking about teaching and learning mathematics. The characteristics 

also influenced what Anastasia saw as possible for herself as a teacher. These characteristics 

constructed the boundaries and constraints Anastasia had to work within to form her 

conceptualizations as a teacher-of-mathematics.  

Discussion & Conclusion: The Benefits of a Sociocultural Perspective of Emotion 

The sociocultural perspective of emotion provides a different way to consider the influence 

of emotions on becoming a mathematics teacher. The feeling rules Anastasia constructed were 

not specific to mathematics nor were the other participants’ in the larger study (Gomez, 2016). 

The experiences in the mathematics classroom, although, did influence the construction of the 

general feeling rules. Furthermore, the characteristics to her moral geography were the only ones 

specific to mathematics. I conjecture that due the participants being early in their course work, 

most of the reflection work conducted was guided to developing their purpose as mathematics 

teachers. As they continue to visit schools and prepare for student teaching, the moral geography 

will have greater influence. We can see from Anastasia’s case that the moral geography 

influenced the professional and political geographies because it defined Anastasia’s purpose for 

teaching mathematics, but the characteristics were still yet specific to mathematics. 

Future work can focus on specific constructs of the sociocultural perspective of emotions. 

Considering feeling rules, one can determine the possibility of the construction of socio-
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emotional mathematical norms or the norms set in a classroom about how students should feel 

about doing and learning mathematics. Also, emotionality can be explored with a different 

theoretical lens, like a situative perspective (Lave & Wenger, 1991) to refine and expand the 

constructs of emotional labor, feeling rules, and emotional geographies specifically to 

mathematics education.  
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This study provides an in-depth look at in-service teachers’ mathematics anxiety, the effects 
teaching experience may have as to its causes, the strategies used to address alleviate and/or 
overcome it after 5 years teaching experience. Interviews, and a 24-item self-rating Mathematics 
Anxiety Rating Scale-Revised (MARS-R) indicate that over 95% had either moderate to high 
levels of mathematics anxiety (p < .001). This research provides support to the importance of 
mathematics methods courses, collaborative experiences and teaching practices, and a glimpse 
into in-service teachers’ personal impact on their students. 
 
      Research on mathematics anxiety in both preservice and in-service elementary teachers 

(Adeyemi, 2015; Aslan, 2013) has focused on the origin of prior negative mathematical 

experiences, mathematical beliefs, the effect of prior teachers, and teacher education training 

programs. An underlying assumption of this research is that preservice teachers with high levels 

of mathematics anxiety are likely to become teachers who do not enjoy teaching mathematics 

(Gresham, 2009). Thus, they continue avoidance of the subject due to lack of confidence, ability, 

and mathematical content knowledge (Beilock & Maloney, 2015). This longitudinal research 

study revisited in-service teachers (previously involved in a preservice teacher research study on 

mathematics anxiety) after 5 years teaching experience. The purpose was to (1) determine and 

compare in-service elementary teachers’ levels of mathematics anxiety to their preservice 

posttest mathematics anxiety scores after 5 years teaching experience, (2) determine if 

participation and preparation in a preservice mathematic methods course continued to affect in-

service elementary teacher’s mathematics anxiety, and (3) to determine, if any, the cause of such 

affected change in mathematics anxiety. 

Mathematics Anxiety, Preservice & In-service Teachers, and Instruction 

      Mathematics anxiety knows no boundaries (Tobias, 1978) and has been defined as a feeling 

of uncertainty and an uneasiness when asked to do mathematics and the “I can’t” syndrome. It is 

an inability to perform well on tests, a feeling of physical illness, helplessness and panic, 

faintness, and mental disorganization (Bursal & Paznokas, 2006). It is a phenomenon where 

individuals suffer from the irrational fear of mathematics to the extent they become paralyzed in 

their thinking and are unable to learn or be comfortable with mathematics. 
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      Extensive research on mathematics anxiety has tried to determine why so many people 

(particularly females) in the United States demonstrate a fear or even antipathy toward 

mathematics (Belbase, 2013; Lake & Kelley, 2014). A study by Aslan (2013) indicated that in-

service teachers had higher levels of mathematics anxiety. Lake and Kelly (2014) linked negative 

teacher attitudes about mathematics to mathematics anxiety. Negative attitudes toward 

mathematics and mathematics anxiety can produce negative results in mathematics due to the 

reduction of effort expended toward the activity, the limited persistence one exerts when 

presented with an unsolved problem, the low independence levels one is willing to endure, and 

whether or not a certain kind of activity will even be attempted (Vinson et. al, 1998; Fetterly, 

2010). Obviously, limited teaching experiences, coupled with high levels of mathematics anxiety 

in preservice teachers is a concern as it may certainly carry over into the classroom once they 

become in-service. As a result, it is believed that teachers must be adequately prepared in 

mathematics and should be done through mathematics methods courses offered by teacher 

education programs (Aslan, 2013; Lake & Kelly, 2014).  

Participants 
      Ten elementary in-service teachers participated in a prior study (involving 267 preservice 

teachers) that investigated preservice teachers’ mathematics anxiety before and after a 

mathematics methods course. These ten teachers maintained the highest mathematics anxiety 

rating in the preservice study and were therefore, chosen for the in-service study. As 

undergraduates, all were required to take college algebra, principles in statistics, one K-6 

mathematics content course, and K-6 mathematics methods course. No teachers involved in this 

study chose to enroll in courses beyond what was required within the undergraduate elementary 

education program. Three teachers held a master’s degree in education and one was within 

weeks of graduating with a master’s degree in education. All were female and taught in self-

contained public schools. Seven were Caucasian, 2 were African American, and 1 was Hispanic. 
Data Analysis 

      Paired sample t-tests were completed to consider differences between the pre- and posttest 

Mathematics Anxiety Rating Scale (MARS) levels from the preservice scores (prior study) and 

from the posttest- in-service test scores (current study). Scores from the preservice study were 

subtracted from the in-service MARS score to reveal a difference in scores. A positive difference 

score meant that the in-service teacher’s mathematics anxiety actually increased after 5 years 
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teaching experience. A negative score meant that the in-service teacher’s mathematics anxiety 

continued to decrease by that much.  

Informal observations of teachers, questionnaire-guided narrative interviews, informal 

discussions and interviews were initiated by one researcher (professor) in both studies. The 

interviews were usually in response to questions regarding their own personal concerns, 

experiences, background, assignments, and mathematical teaching practices. Field notes and 

audio recordings of interviews and discussions were used and analyzed and decoded for 

emerging themes.  

Quantitative Findings 

      Table 1 illustrates preservice teachers’ mathematics anxiety scores from the previous study. 

The MARS pretest/posttest comparison scores and gains revealed significant decreases in all 10 

teachers’ mathematics anxiety from pre-posttest after participating in a mathematics methods 

course. Table 2 shows the comparison of the preservice posttest and in-service test raw mean 

scores from the in-service teacher study. After comparing group means for the posttest and in-

service scores, it was found that overall in-service teachers’ mathematics anxiety (although still 

highly prevalent) decreased slightly after 5 years teaching experience. Teachers 1 and 2 had the 

least mathematics anxiety reduction after 5 years teaching experience with a -09 and -08 

decrease respectively thus maintaining a high anxiety grouping in both studies. Teacher 5 had the 

continued greatest reduction of mathematics anxiety with a -41 gain in scores. Teachers 3, 4, 9, 

and 10 had decreasing scores ranging between -13 to -16. Teacher 6 and 8 had a -27 decrease 

Teacher 7 had a -26 decrease in mathematics anxiety scores. 

Qualitative Findings 
      All 10 teachers commented that their mathematics anxiety was consistently evident in their 

mathematics classroom throughout their 5 years teaching experience. Each identified daily 

struggles not only within themselves but in their students as well. Comments revealed their 

mathematics anxiety and lack of mathematical confidence and mathematics skills affected their 

classroom practices. Several teachers expressed a disdain towards mathematics as “very 

overwhelming to the point of madness.” First and second grade teachers revealed they felt more 

comfortable teaching the lower grades because they lacked confidence with the mathematical 

content to teach in the upper grades.  
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Table1 

MARS Preservice/Posttest Comparison Scores 

Teacher Grade Level Preservice Pretest Score Preservice Posttest 
Score 

Gain 

Teacher 1 1st 331 260 -71 
Teacher 2 2nd 343 269 -74 
Teacher 3 2nd 273 212 -61 
Teacher 4 2nd 297 218 -79 
Teacher 5 3rd 328 250 -78 
Teacher 6 4th 299 231 -82 
Teacher 7 4th 296 228 -68 
Teacher 8 4th 300 216 -84 
Teacher 9 5th 275 202 -73 
Teacher 10 5th 283 205 -78 

Note. p < .005 

Table 2 

MARS In-service Comparison Score 

Teacher Grade Level Preservice Posttest 
Score 

In-service Test Score Gain 

Teacher 1 1st 260 250 -09 

Teacher 2 2nd 269 261 -08 
Teacher 3 2nd 244 229 -15 
Teacher 4 2nd 238 223 -15 
Teacher 5 3rd 250 209 -41 
Teacher 6 4th 231 204 -27 
Teacher 7 4th 228 202 -26 
Teacher 8 4th 216 199 -27 
Teacher 9 5th 202 186 -16 
Teacher 10 5th 205 192 -13 

Note. p < .001 

Both teachers indicated such a strong “dislike and fear towards mathematics” that implementing 

effective lessons in the upper grades would be “intimidating and ineffective which would 

certainly negatively affect their students.” Teachers 6, 7, and 8 (each earning a master’s degree in 

education by their 4th in-service year) also had significant decreases in scores after 5 years 

teaching experience. All three reiterated that additional mathematic courses (taken with the same 

professor as their undergraduate) and the required professional development mathematics 

workshops in their graduate program of study highly impacted their attitudes and confidence 

within the mathematics classroom and improved their overall content knowledge. However, 
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Teachers 5, 6, 7, & 8 (all 4 master’s teachers) expressed the need for “career long” mathematics 

professional development to continue strengthening their mathematics skills and effective 

mathematics teaching practices while specifically addressing and/or alleviating their 

mathematics anxiety in the process. Even though all 10 teachers’ mathematics anxiety was still 

highly evident all involved felt the teacher’s attitude toward the subject set the tone for students’ 

successful learning. Each felt their mathematics anxiety decreased as they gained more teaching 

experience as they worked to hide their negative feelings regarding mathematics and employ a 

positive attitude while in the classroom. Teachers saw “themselves in their students” with 

relation to their own mathematics anxiety. They also emphasized how much they learned during 

the methods course and viewed the activities, strategies, etc. that were incorporated within the 

methods course as ones currently employed within their mathematics classrooms and which were 

beneficial in helping reduce their mathematics anxiety. They proved diligence in implementing 

lessons that were engaging and hands-on with real world applications to spare their students the 

same angst they experienced while learning mathematics. 

      In the prior study, 4 themes emerged during preservice interviews that related to teachers’ 

perceptions towards the effectiveness in teaching mathematics to elementary students. These 

themes included attitudes towards mathematics, mathematics teaching practices, description, and 

understanding of mathematics. In-service teachers were asked to read their preservice teacher 

comments to determine if their prior perceptions regarding mathematics anxiety had changed. 

Their current comments were used to compare their thoughts after 5 years teaching experience. 

From the prior study, preservice teachers’ negative attitudes towards mathematics surfaced very 

quickly. Five years later all 10 teachers indicated they still did not like mathematics and really 

struggled with the subject and their negative attitudes. Many in-service teachers’ statements 

described negative emotions with words such as “stressed”, “embarrassed”, “frustrated”, 

“fearful”, “discouraged”, and “struggling.” They associated these words directly with their 

personal mathematical experiences not only as a former student themselves, but as a teacher. 

Their words suggest confidence inadequacies in their ability to effectively reach their students 

both academically and emotionally and identifies their well-entrenched beliefs about 

mathematics teaching and learning. In-service teacher recognized their fears for a lack of solid 

understanding of mathematical content. They expressed a much needed intentional change once 

they saw how their attitudes and frustrations affected their students. They reflected on the 
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outcomes as having an effect which required a change in their teaching practices through the 

implementation of the methods learned in the preservice experience. The existing classroom 

practices were explained as was the development of somewhat more realistic expectations for 

successful learning outcomes. Their comments are evident of their attempts to self-motivate and 

confidence build while forging ahead with efforts to establish a more positive learning 

environment in spite of their mathematics anxiety, struggles, and frustration. All 10 teachers, 

regardless of their level of mathematics anxiety, reiterated the importance of using 

manipulatives, engaging, and motivating students for successful mathematical learning. They 

also felt that using manipulatives contributed to lessening their own mathematics anxiety to some 

degree. Although a few in-service teachers stated they were unsure of their use as a preservice 

teacher and at the very beginning of their teaching careers, they felt that as time passed they 

became more comfortable with teaching and with incorporating manipulatives as an essential 

learning tool in the classroom. As a preservice teacher, some described mathematics and their 

understanding of it in different ways. Although many attributed it to their ability to work hard, 

memorize material, and from positive experiences at home and school, others commented on the 

struggle to learn mathematics, lack of help from parents who had little knowledge of the 

mathematical content, and the challenge to meet their weaknesses in mathematics. As an in-

service teacher, they not only reiterated the same thoughts but that “drill and kill” of mathematics 

content did not lead to mathematical understanding.  

      In-service teacher interviews showed emerging themes including: the significance in taking 

the undergraduate mathematics methods course, how the methods course affected their 

instructional practices, how the mathematical practices learned in the course are the practices 

currently used in their classrooms, and the demands of teaching. Teachers acknowledged need 

for deep understanding of mathematics for their effectiveness in making meaningful contexts 

which are constructed, connected, and applied to mathematical learning. They felt students must 

be actively engaged and students must be participating in the learning and understanding of 

mathematics. Their comments show that such use would tend to promote problem-solving ability 

by providing a vehicle through which children can model real-world situations as illustrated in 

the methods courses. They also stressed the importance of how manipulative materials can be 

effectively used as an intermediary between the real world and the mathematical world.  
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Discussion and Conclusions 

      Even though the decrease was minimal, the quantitative results from the study concludes that 

teachers’ math anxiety was reduced through their teaching practice. The intention of this study 

was to provide a more in-depth look at in-service teachers’ mathematics anxiety and the effects 

teaching experience may have with regards to their mathematics anxiety. From this study, we are 

reminded through the teachers’ voice of how teacher mastery of the mathematical content also 

has an effect on the students (Beilock, & Maloney, 2015) as it goes back to teacher preparation 

and knowledge of subject matter. Teacher comments indicated that they longed to situate the 

course and their experiences within their development as an elementary educator and for direct 

applications to the elementary mathematics classroom. Therefore, the results from the study 

provides insight into the durability and effectiveness of teacher training programs that emphasize 

manipulatives and other strategies to help reduce mathematics anxiety in teachers (Aslan, 2013). 

This research provides support to the importance of mathematics methods courses, collaborative 

experiences, and the use of manipulatives in shaping preservice teacher’s eventual practices as an 

in-service teacher as well as a glimpse into in-service teachers’ recognition of their personal 

impact on their students. Even though in-service teachers’ mathematics anxiety did continue to 

slightly decrease after 5 years teaching experience, the greatest decrease in mathematics anxiety 

occurred while involved in the mathematics methods course as a preservice teacher. The 

usefulness of the mathematics methods course and experiences was a salient finding. Therefore, 

this study further supports the importance of having teacher education programs that influence 

the development of effective instructional practices while specifically addressing the reduction of 

mathematics anxiety in preservice teachers.  

      Even though this study is situated in the context of a smaller sample size, the argument has 

demonstrated the complexity of mathematics anxiety as a universal concern for all mathematics 

educators. When considering the findings, a determination is not made that changes will persist 

or will continue to change. However, carefully examining the process of change even with this 

study’s sample size may help us become better informed not only about the longitudinal 

effectiveness of our mathematics methods course but the usefulness in understanding the 

important outcomes of those mathematics methods courses across time. The study results also 

provide a foundation for more investigation of the need for continued mathematics professional 

development opportunities that specifically address mathematics anxiety and to determine how 
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in-service teachers’ mathematics anxiety influences and affects instructional practices. This 

study will continue with the same in-service teachers at 10 and 15 years and/or longer to further 

research and discover how and/or why in-service teachers’ cycle of mathematics anxiety 

continues or changes and to identify all causes of such change as service years increase. Studying 

the longitudinal effects of mathematics anxiety in preservice teachers is a critical component for 

institutions of higher education to make informed decisions about the mathematics methods 

courses included in teacher education programs. Researchers and teachers must continue to work 

together to determine which curricula and instructional practices will bring the best results in 

mathematics achievement and thus eliminate the cycle of mathematics anxiety. 
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Guided by the “constructivist in practice” dilemmas framework developed by Windschitl (2002), 
we investigated the conceptual, pedagogical, cultural, and political barriers that K-12 
mathematics teachers in a high-poverty urban district encounter when trying to implement 
constructivist practices they learned through a rigorous professional development (PD) 
program. Themes that emerged from this qualitative analysis included barriers concerning lack 
of awareness of constructivist theory, difficulties facilitating constructivist activities in the 
classroom, poverty, lack of instructional autonomy, and high-stakes testing. Identifying barriers 
to constructivist teaching may inform teacher educators and school administrators in developing 
strategies to overcome these obstacles and improve mathematics-teaching quality.   

 

Introduction 
At its core, constructivist teaching facilitates an active learning environment where students 

interact with one another and connect new ideas with existing knowledge to construct a 

meaningful conceptual understanding of information within an academic discipline (Hennessey, 

Higley, & Chesnut, 2012). Within the mathematics education community, the constructivist 

teaching philosophy serves as the framework for reform-based teaching (National Council of 

Teachers of Mathematics, 2014). Research indicates that this philosophy is associated with 

greater student achievement in mathematics, enhanced algebraic procedural and conceptual 

understanding, as well as more sophisticated epistemological conceptions of mathematics (Kim, 

2005; Ross & Willson, 2012; Star & Hoffman, 2005). Thus, high-quality teacher professional 

development aims to develop the conceptual and pedagogical groundwork for mathematics 

teachers to implement constructivist practices in their classrooms (Garet, Porter, Desimone, 

Birman, & Yoon, 2001). However, even when mathematics teachers gain the adequate 

conceptual and pedagogical foundation to implement constructivist practices, they may still face 

political and cultural challenges to enact these practices in their classrooms (Windschitl, 2002). 

These challenges may be more pronounced in high-poverty urban schools where emphasis on 

rote learning, scripted lessons, mandated curriculum, and accountability is more likely to prevail 

(e.g., Crocco & Costigan, 2007). Perhaps because of these challenges, research has found that 

teachers working in high-poverty urban school schools are less likely to enact constructivist 
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instructional approaches that align with mathematics reform standards compared to their 

counterparts teaching in low-poverty school districts (Berry, Bol, & McKinney, 2009). 

Therefore, guided by the “constructivist in practice” dilemmas framework developed by 

Windschitl (2002), we will investigate the personal, cultural, and political barriers that K-12 

mathematics teachers in a high-poverty urban district encounter when trying to implement 

constructivist practices taught through a teacher professional development program. In addition, 

we seek to identify motivational and behavioral strategies teachers utilize to overcome these 

obstacles to sustain constructivist practices. It is the hope that through this research, we will help 

further the quality of mathematics instruction, and, in turn, students’ mathematics achievement. 

Theoretical Framework 

To address the dearth of research that seeks to uncover the full spectrum of challenges 

teachers face in facilitating constructivist classroom environments, Windschitl (2002) developed 

the “constructivist in practice” dilemmas model to propose that there are four broad dimensions 

that capture challenges to the implementation of constructivist teaching: conceptual, pedagogical, 

cultural, and political dilemmas. Conceptual dilemmas involve teachers’ epistemological 

understanding of constructivism. Pedagogical dilemmas deal with the design of curriculum and 

classroom activities to align with constructivist teaching. Cultural dilemmas involve the roles 

that are necessary among teachers to facilitate a constructivist classroom environment. Political 

dilemmas are encountered when resistance to constructivist teaching arises among various 

stakeholders within school communities (Windschitl, 2002). This framework will serve as an 

initial guide to organize our qualitative interview data concerning teachers’ barriers to 

implementing constructivist practices learned through rigorous PD in mathematics instruction.  

Research Questions 

1. What types of barriers do teachers working in high-poverty schools encounter when 

transferring constructivist practices learned through PD into their classrooms? 

2. What types of facilitators assist teachers working in high-poverty schools to implement 

constructivist teaching learned through PD? 
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Method 
Participants 

A total of 80 K-12 in-service mathematics teachers from urban school districts in Texas 

participated in a three-week rigorous summer PD program focusing on mathematical content and 

pedagogical knowledge informed by constructivist theory. The teachers volunteered or were 

selected by school administration to participate in the program. The mathematical content focus 

was: (a) numbers, operations, and quantitative reasoning; and (b) patterns, relationships, and 

algebraic reasoning. A total of 80 teachers from eight school districts and one private school 

represented the initial sample. We identified 52 teachers working in high-poverty schools within 

a high-poverty school district. We categorized these teachers by grade level (K-6 and 7-12) and 

teaching experience (experienced and novice [less than 5 years of teaching]). We randomly 

selected two teachers from each cell of this 2X2 design (8 teachers in total).  

Procedure  

Authors developed a structured interview protocol that included questions about their 

experience in the PD program, their teaching philosophy, and barriers and/or facilitators to 

implementation of teaching practices of what they have learned through the PD. Authors 

interviewed these eight teachers in the spring semester of the 2015-16 academic year following 

the summer PD. Student research assistants transcribed the interviews. All three authors read 

through the interviews to identify specific manifestations of Windschitl’s (2002) four 

constructivist dilemmas in the transcripts and met to discuss the themes developed (Patton, 

2002). Then, authors categorized these themes within Windschitl’s (2002) four dilemmas of 

constructivist teaching. In addition, within each type of dilemma authors specifically made note 

of factors that either helped (facilitator) or hindered (barrier) their use of constructivist teaching 

methods. Authors used Windschitl’s (2002) descriptions broadly and included examples that 

were not explicitly mentioned in the article but were consistent with the overall conception of the 

dilemma. After developing a first draft of a codebook that included detailed description of the 

codes, we selected two interviews at random to be coded by all three authors. A second coding 

meeting was held to discuss what codes authors had applied and why. If there was a discrepancy, 

authors resolved them to establish interrater reliability. Additional revisions of the codebook 

were made based on authors understanding of the codes as they were applied to the interview. 

After establishing agreement and finalizing the codes, each author coded four interview 
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transcripts so that each transcript was coded by two authors. A final meeting took place between 

the pairs of authors to resolve any coding discrepancies.  

Findings 

Below we describe Windschitl’s (2002) four dilemmas and how each one manifests for 

participating mathematics teachers in high-poverty urban school districts. 

Conceptual barriers. According to Windschitl (2002), conceptual dilemmas refer to the 

difficulties in understanding the constructivist approach to teaching. Teachers’ deep 

understanding of the constructivist approach might be thought of as a predecessor to effective 

constructivist techniques because of the inherent philosophical nature of the approach as well as 

the significant departure from “traditional” teaching methods. Furthermore, teachers may 

conflate the activities associated with constructivism with the approach itself. In other words, 

they may implement ostensibly constructivist methods (use of manipulatives, social dialogue) 

without implementing the core of constructivist theory because of poor understanding of the 

theory itself.  

In our data, we looked for evidence of conceptual barriers, such as teachers being confused 

about or unaware of the term “constructivism” when asked directly about their opinions about 

constructivism. Conceptual barriers also included teachers believing that students learned math 

best via traditional methods. For instance, one teacher noted, “I am old school in that I do like 

them to learn paper/pencil first before we move on to the calculator.” 

Conceptual facilitators. Conceptual facilitators included endorsing beliefs and implementing 

instruction that are consistent with a constructivist approach, such as developing understanding 

through social interaction and implementing student-centered approaches. Though teachers were 

often unfamiliar with the term “constructivism” and were not able to fully articulate the theory, 

many teachers conveyed that students learn math best through methods and activities consistent 

with constructivism. For instance, one teacher said, 

So, I like my kids to learn through play because I think that that works best for kids. Kids 
learn through each other and they learn through play and they learn through conversation 
(…) Numbers are just symbols, but if they don’t understand what it means. They are not able 
to manipulate it, then they are not able to do math, because if they don’t understand it, then it 
is just essentially rote versus actually knowing it, and actually being able to argue why you 
are doing it and then me teaching them a strategy and then they coming up with their own 
strategy, versus me teaching them this strategy and they are using that without going deeper. 
So, I like to teach them to think deeper and dig deeper through hand-on interactions and 
conversations with each other. 
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Pedagogical barriers. Windschitl (2002) describes pedagogical dilemmas as teachers’ 

application of constructivist theory to the learning environment via tasks and activities. 

Specifically, these dilemmas refer to teachers’ attempts at transforming their instructional 

technique from traditional, didactic methods to methods consistent with constructivism. As part 

of this process, teachers must shift their focus from, for example, supplying answers and 

techniques to acting as a facilitator for student learning; from minimal student interaction to 

facilitating academically productive student dialogue; or from using pre-determined problem sets 

to creating complex problems that provoke deep and meaningful work. Pedagogical dilemmas 

can also refer to teacher attributes, such as deep background knowledge or interest in the 

material.  

In terms of pedagogical barriers, some teachers mentioned the difficulties in facilitating 

activities, such as the use of manipulatives, noting that students can use them inappropriately.  

Other pedagogical barriers included teacher attributes, such as poor motivation (“it's about 

maintaining my motivation, cuz this is a burn-out industry, and I felt it. You know, I have felt 

it.”) or lack of background knowledge (“And I'm not like a mathematician, like some people are. 

They get these concepts and they're real fast, and they get it, and their knowledge is real deep 

right away, and not so with me.”).  

Pedagogical facilitators. In terms of pedagogical facilitators, several teachers noted that they 

were able to successfully manage the different demands of a more constructivist classroom 

(several mentioned coping with the “organized chaos” involved in having students work more 

cooperatively). There were several different types of activities mentioned, such as using 

manipulatives, technology, art, real-world data collection, and even yoga to teach math. One 

teacher describes her use of manipulatives as follows: 

As an 8th grade teacher I always think that my kids are too old for manipulatives. And, there 
were some really good activities that we did over the summer that I don't know. And I did 
them in my classroom. And I don't know how I would've done them without the 
manipulatives. Um, you're never too old. As students, you're never too old for manipulatives, 
it's just the process changes. And, you know, I used the algebra tiles with my algebra kids. 
I've used the two color counters with my 8th grade kids. We did a thing with my 8th grade 
kids, that one of my instructors did with bags for the real number system. And my kids, they 
got it. Because they had that visual there to see. So, it was really fun. I enjoyed it. 

 



	
	

Proceedings of the 44th Annual Meeting of the Research Council on Mathematics Learning 2016   62 

Cultural barriers. Windschitl (2002) defines cultural dilemmas as occurring when teachers 

encounter difficulties related to learning expectations from students or other stakeholders that do 

not match constructivist theory. For instance, part of implementing constructivism entails re-

writing the “unwritten rules” related to participation and decision-making. The cultural 

background and expectations of students and even fellow teachers may also be inconsistent with 

a constructivist approach, creating difficulties in implementing the approach. 

In our data, cultural barriers included other teachers’ attitudes as favoring status quo teaching 

approaches, difficulty implementing the constructivist techniques learned through the PD due to 

classroom management concerns, or student poverty as a barrier. For instance, one teacher noted, 

“So the distractions, just just the fact that outside of these walls, there's nothing to motivate them 

to do what we're doing here. You know, it's just, they're just, they're on survival mode out there.” 

Related to the attitude of other teachers, one teacher noted: 

Some older teacher, I guess, veteran teachers are gung-ho on having their kids memorize 
these facts, and I understand memorizing the facts once you know what they mean. But they 
are like no, I am going to drill and kill. 9 x 7 is what? 5x5 is what? And the kids don't 
understand the concept and it’s mainly because I guess the teachers that they had before 
didn't do what they needed to do to develop the concept (…) So, I am not for drill and kills, 
some people are. I understand why you shouldn’t do them. I understand why you should. But 
some people are like adamant. They are like nope, I am gonna do drill and kill it’s always 
worked and I am gonna continue to do it. 

However, other teachers noted their colleagues’ attitudes and behaviors as facilitating their 
instruction. For example, one teacher said: 

The other teachers in my immediate area, just around me, we're really amazing support 
system for each other, we keep an eye out for each other, we know the ins and outs of what's 
going on and what our deeds are, what students need help with in what periods, it's really 
about building that team around you.  
Political barriers. Windschitl (2002) discusses political dilemmas as occurring when 

systemic barriers interact with the implementation of the constructivist approach. These 

interactions can occur with a variety of stakeholders, such as campus or district-level 

administrators or from parents or other community stakeholders. Transitioning from the 

“traditional” and somewhat expected framework of instruction is apt to produce controversy and 

tensions amongst a variety of stakeholders. Teachers did report some political facilitators, such 

as some degree of administrative support (“my principal just kinda lets us go teach, do what you 

need to do.”). However, there were a number of political barriers that were mentioned by the 

teachers interviewed.  
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One of the most common political barriers came when teachers were not able to access the 

instructional resources they needed in order to implement constructivist learning in their 

classrooms. In implementing the things they learned through the PD, teachers would need access 

to resources such as manipulatives, technology, and materials for interactive notebooks. 

However, teachers reported that they were unable to secure the specific resources they needed to 

be able to effectively implement what they learned. For instance, one teacher noted, “Well as far 

as math is concerned, we don't have the manipulatives in order to teach the concepts.” 

Another common political barrier to implementing constructivist teaching came when 

teachers encountered the overlapping concerns of testing, timing, and flexibility. Because of state 

accountability tests, these concerns are likely related given that schools and districts have come 

up with a specific curriculum sequence and timeline to ensure students are prepared for the tests. 

Schools and districts may also use prescriptive methods to ensure teachers adhere to methods 

they believe will result in higher test scores. These types of barriers were very commonly 

mentioned especially as they contrast with a constructivist teaching framework. For instance, 

teachers wished they had more flexibility and time to be able to explore concepts, correct 

misconceptions, and engage in exploratory learning but found that they encountered some 

pushback when attempting to deliver those types of strategies into the classroom. For instance, 

one teacher described a tension between what she described as “real people time” (the actual 

time it would take to learn a concept) and “artificial time” (the timeline dictated by the testing 

schedule). One teacher described some negative interactions with an administrator due to these 

concerns, “Like I have said, I have gotten chewed out multiple times for not being where I 

should be on the pacing calendar...” Other teachers noted:  

The other thing is that sometimes we're not free to teach the way the concept was brought 
across in the training here. And so we basically have to adapt to whatever the campus wants 
to do. Like, however the campus wants to teach the concept, you know, if it's not tested on the 
STAAR, we don't teach it in the classroom. Or if it's one of the items that are not tested very 
often on the STAAR, we don't spend a lot of time on it. Even though it's going to be something 
that they're going to need to have a foundation in algebra for. We gloss over in 8th grade, 
where we really need to spend the time because it's not one of the important TEKS that will 
have questions. 

Discussion 

This study applies and extends Windschitl’s (2002) “constructivist in practice” dilemmas 

framework by elucidating how these dilemmas manifest for teachers working in high-poverty 

urban districts. Perhaps some of the most common dilemmas reported included conceptual 
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dilemmas and political dilemmas. Results indicate that while teachers develop an understanding 

through PD of how students learn best that is consistent with constructivism; they still lack full 

awareness of their underlying teaching philosophy. Based on this finding, we recommend that 

teacher educators explicitly convey the theoretical framework that informs the pedagogical 

approaches their programs endorse. Prominent political dilemmas included lack of instructional 

resources and instructional time constraints due to high stakes testing. These findings imply that 

additional consideration by district and school administration is necessary to support teachers so 

that they gain maximum benefit from their constructivism-informed PD experiences.  
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This case-study focuses on a cultural counter-narrative of Andrew’s journey from high-school 
dropout to mathematics graduate student. Andrew has completed all required doctoral 
qualifying exams and loves teaching undergraduate students. Narrative inquiry was implemented 
with a semi-structured interview to determine what life experiences, and in what ways those 
experiences influenced his pedagogical decisions. Analyzing the interview data through four 
narrative cycles of coding resulted in identifying specific life experience structures that influence 
Andrew’s teaching decisions. His experiences demonstrate strong connections to Andrew’s 
decisions related to his presentation of mathematical content. 

 
Introduction 

To encourage more students to explore and engage in Science, Technology, Engineering and 

Mathematics (STEM) fields, a large amount of research has focused on students’ high school 

preparation for STEM majors. Students enrolling in advanced science and mathematics 

coursework in high school have been shown to choose and complete STEM majors at a much 

higher rate than their peers who lack this foundation (Gottfried, 2015). However, the current 

STEM literature has limited narratives on students who move slowly through early mathematics 

courses, enrolling in introductory college algebra coursework and yet, successfully switch into a 

career requiring advanced mathematics coursework (Becker and Park, 2011).  Our study proposes 

to inform the field with such a narrative.  

In addition, teachers' practice is shaped by their life experiences (Bukor, 2013; Klausewitz, 

2005). “To understand what happens when teacher and student meet in teaching-learning 

situations, it is necessary to understand their stories” (Connelly & Clandinin, 2000, p.318). Even 

early experiences with family have been shown to make long lasting impacts on teachers’ 

“perceptions of their identity as well as on their instructional practice and teaching philosophy” 

(Bukor, 2013, p.63). Life experiences work as a filter or lens as teachers evaluate their teaching 

and make classroom decisions (Klausewitz, 2005). Their personal experiences can help explain 

why teachers make decisions in particular ways (Klausewitz, 2005) and reveal a connection 

between their experiences as mathematical learners and their teaching approaches (Kaminski, 



	
	

Proceedings of the 44th Annual Meeting of the Research Council on Mathematics Learning 2016   66 

2003).   This case study seeks to understand how and in what ways the participant’s story 

influences his teaching. 

Our participant (Andrew), shares his journey from a high-school dropout to a mathematics 

doctoral candidate who loves teaching. Andrew persisted through adversity to enjoy a deep study 

of mathematics, passing all qualifying exams, and becoming passionate about teaching 

mathematics. The purpose of this study is to identify the participant’s background and 

experiences, and understand how his life history influenced and informed his teaching of 

undergraduate students. We seek to answer the following research question: What life 

experiences influenced, and how did those life experiences influence, Andrew’s decisions about 

teaching undergraduate mathematics? 

Theoretical Framework 

To connect Andrew’s decisions and life-experiences, we focused on a portion of the 

conceptual framework proposed by Borko et al. (1992) for their study which sought to 

understand and describe how various factors influence and shape beginning middle-school 

mathematics teachers as they learn to teach. While Andrew is not a middle-school teacher nor 

was he enrolled in a teacher preparation program, several of the factors were appropriate for our 

research question and were significant for Andrew. Borko et al. theorized that teachers’ 

knowledge, beliefs, classroom thinking, and actions influence one another, which is indicated by 

the double arrows (Figure 1).  

 

 

 

 

 

 

 

Figure 1. Borko et al.’s (1992, p. 200) influencing factors of teaching.  

The teacher education program (Box 3) and their actual teaching experiences (Box 4) were 

considered to be significant experiences that would impact teaching. The teachers’ personal 

histories (Box 5) and participation in a special project (Box 6) were theorized as secondary 

influences. 
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Our study seeks to understand the life and teaching experiences of a graduate student who 

did not experience formal teacher education and is not a certified teacher. His story was engaging 

because he took a non-traditional path into doctoral mathematics coursework and plans to enter 

the teaching profession. Thus we focused on how his life experiences (Box 5) inform both his 

classroom decisions (Box 2) and his feelings or perceptions related to teaching (Box 1). 

Method  

Narrative research aims to understand individuals’ experiences over time and within context 

(Caine, Estefan & Clandinin, 2013). It is interested in answering questions about the meaning of 

experience, not just describing or giving details of an experience (Kramp, 2004). Thus, narrative 

inquiry was chosen because the goal of this study was to understand the participant’s life 

experiences and how he makes meaning from them. This qualitative case study used a semi-

structured interview to understand the participant’s life experiences and their influences on his 

teaching.  

Participant’s Background 

The participant, Andrew, volunteered for this study. Andrew’s high school experiences did 

not prepare him for graduate work in mathematics. As a high school student, Andrew stated that 

he disliked school. He described himself as a student who would try to disrupt the class and who 

had issues sitting still. He began in trigonometry but was dropped down to business math. 

Ultimately, he dropped out during his senior year because he had not completed the work. “I 

wasn’t interested in things that they were giving me in high school” and was “just bored for the 

most part.”   

When Andrew learned that he was eligible for financial aid if he attended the local 

community college, he quickly earned a GED and went “right away because I would get 

money.” After making good grades on tests and papers, Andrew “found out that [he] was 

actually good at school.” Even though he placed into an introductory algebra course, he excelled 

in mathematics and chose it for his major. “I literally did start, not necessarily at the bottom, but 

like as close to the bottom as you can get in college.”  

Eventually Andrew transferred to a large university and completed a bachelor’s degree after 

eight years in higher education. Continuing onto graduate school, he even passed the qualifying 

exam for a PhD in mathematics on his first attempt but chose to leave with a master’s degree so 

that he could move back to his hometown and spend more time with his wife and family.  
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Data Collection 

An interview guide was designed to answer the research question. The first five questions 

focused on the participant’s path into doctoral coursework. The last five questions were designed 

to understand how his personal biography influenced the participant’s teaching. In addition, one 

researcher observed the participant’s teaching a single lesson and the other researcher watched a 

recording of the same lesson. This triangulation of data allowed the researchers to deepen their 

understanding of the participant’s teaching and confirm statements made by the participant 

related to his teaching behaviors. 

Data Analysis 
In order to answer the research question relating Andrew’s life experiences to his teaching 

decisions, the entire interview was transcribed by the first researcher and four cycles of coding 

were used to understand the data and identify themes. We initially coded using Saldaña’s first 

cycle coding methods, by primarily using descriptive coding, process coding, and in vivo codes 

(Saldaña, 2009). Next we paraphrased through memo coding (Willig & Stainton-Rogers, 2007), 

where we sought to identify transitions and themes in his story, as is appropriate for our 

framework of narrative inquiry. A coding scheme was designed from the first two cycles by 

clustering concepts. Next, we applied stanza coding (Willig & Stainton-Rogers, 2007) to verify 

that our codes for experiences, decisions, external resources such as time and money, and 

internal resources such as beliefs and reasons for choices, aligned well with the data. Both 

researchers discussed difficult passages to code and refined the coding scheme. Rethinking our 

data in this way, we began to conceptualize Andrew’s internal resources as reflecting his 

perceptions and beliefs about his experiences. Consistent with the conceptual framework, the 

final coding resulted in using the themes of experiences (Figure 1, Box 5), decisions (Figure 1, 

Box 2), feelings or perceptions (Figure 1, Box 1) and other. These themes were chosen because 

they were the most dominant in Andrew’s narrative. Finally the researchers looked for any 

discernable patterns to help in delineating Andrew’s responses relative to the research 

question. The codes of experiences and feelings or perceptions were well mixed throughout the 

discussion of Andrew’s teaching practices. When he discussed his teaching, he frequently 

reflected on his personal learning experiences. Due to limited space, findings will be shared 

through Andrew’s quotes as well as brief summaries that were developed through the four cycles 

of coding. 
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Findings 

Pedagogically Influential Life Experiences   
“I know what it’s like to be in that position [lost in class] and I don’t want any student to ever 

feel like that… it’s just now a permanent perspective for me.” The analysis showed that 

Andrew’s life experiences influenced his teaching through his dispositions and attitudes toward 

teaching. The three final categories used in the coding scheme (experiences, decisions, and 

feelings/perceptions) were well mixed throughout the interview. However, once the interview 

focused solely on his teaching, a pattern was observed. The feelings/perceptions codes had been 

further broken into opinions, attitudes and dispositions. While discussing his teaching, these 

codes became heavily concentrated on dispositions (about 55%) and attitudes (about 25%). Prior 

to this, feelings/perception codes had been coded as opinions two-thirds of the time. The code of 

experiences consistently appeared throughout discussion of teaching in the last five interview 

questions, indicating a close connection between his personal experiences and thoughts about 

teaching his students. The classroom environments Andrew experienced while in school and his 

experiences with failure were themes that emerged from the data analysis as influential in 

Andrew’s teaching. Each experience will be described below. 

Classroom environment: Class needs to be interesting. As a teacher, Andrew acted, told 

stories, and used spontaneity because in his experiences as a student, he was driven to work 

when he found the concepts to be interesting.  

If you do something else like act weird and put a little bit of theater into it, students who 

maybe are not intrinsically motivated will … pay attention to you, and then hopefully they’ll 

start paying attention to the material, and maybe they’ll see something that their interested 

in…You gotta make it interesting in some way…You can’t get somebody to think it’s 

(mathematical content) interesting without being interesting yourself.  

This comment, coded as feeling/perception, immediately followed Andrew reflecting on his 

student experience. We began to look back at the codes for Andrew’s high school and 

undergraduate experiences and saw that Andrew worked to put effort into what intrinsically 

interested him. Furthermore, when Andrew didn’t like the way a class was taught, he wouldn’t 

do the work. “When I have intrinsic interest, I’m able to do any problem that’s given to me. But 

when I’m not intrinsically interested, it’s really hard for me to sit down and focus.” He viewed 

classes where a teacher just writes what the book is saying on the board as a waste of his time, 
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and would “rather just go read the book on my own time and not sit in this room and get the 

same information.”  

Andrew wanted his class to be interesting for his students so the students would pay 

attention and engage with mathematics. While most, if not all teachers would say they want their 

class to be interesting for their students, Andrew’s attitude can be linked to his personal 

preferences as a student. This is an example of what Connelly & Clandinin (2000) call teachers’ 

personal practical knowledge and is consistent with research concluding that life history 

influences teaching (Bukor, 2013). 

Experiences with failure: Start with the basics and don’t judge. Andrew’s school 

experiences included not being able to finish work, being dropped into lower academic tracks, 

dropping out of high school, being older than other students, beginning collegiate math at the 

lowest level, seeing teachers’ writing on board and having no idea what’s happening, and 

choosing to give up and not learn. Our codes of feeling/perceptions about teaching were 

frequently immediately preceded by or followed by portions of the interview which were coded 

as experiences. Andrew found himself at a perceived disadvantage as he experienced failure in 

school. So, he related to students who struggled with mathematics and wanted to help them find 

academic success. Andrew believed that good teaching meant filling gaps in student 

understanding, and directly taught his students to use metacognition when solving problems in 

class. Moreover, Andrew empathized with students who struggle in school. He decided not to 

judge or belittle students because of his own difficult experiences in school. 

Effects of Pedagogically Influential Life Experiences.     

Andrew’s life experiences influenced his teaching practice in how he chose to present 

material. Both his presentation style and instructional design are linked to his personal 

biography. Andrew actively worked to keep his students’ attention by performing, telling stories, 

acting silly, mixing up the routine, and creating a casual classroom atmosphere. His instruction 

was very guided, logical, and step-by-step. He viewed “doing” mathematics as a process and 

discussed metacognition with his students.  

The four cycles of coding showed that Andrew used his experiences as a filter to look at his 

own students. His biography further influenced his teaching practice through the relationships he 

sought to build with his students. He was open to dialogue, willing to offer help, and wanted his 

students to participate and answer questions during class, not just lecture to them. His memories 
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of how it felt to be lost or to give up made him empathetic, led him to give students the benefit of 

the doubt, and conditioned him to look for students who struggle. “I’ll look for the students that 

are doing the worst in the class” because he doesn’t want them to have the same adverse 

experiences he had with school.  

Discussion 

In answering our research question, we identified that Andrew drew on his classroom 

environment and his experiences with failure as primary influences that affected his teaching of 

undergraduates. Moreover, when analyzing how he drew on such experiences, Andrew often 

used these experiences as a lens for avoiding teaching decisions that would result in situations 

similar to his negative past experiences, while promoting those decisions that recreated his 

positive learning experiences. Referring back to the theoretical framework (Borko et al.,1992), 

Andrew’s experiences (Figure 1, Box 5) influenced both his feelings and perceptions about 

teaching (Figure 1, Box 1) and his teaching decisions (Figure 1, Box 2). More specifically, our 

analysis showed that his dispositions and attitudes toward teaching were grounded in his 

personal experiences and that these feelings informed his classroom-level decisions. 

This study is only a single case study, yet it offers a valuable counter-narrative to the 

traditional mathematics educator who can successfully “do mathematics” while also examining 

how personal biography influences teaching practice. Andrew experienced high levels of 

academic failure yet still became a mathematics doctoral student, reminding us that the pursuit 

for knowledge is not a race. Efforts to recruit more STEM majors may benefit from broadening 

their focus to include students such as Andrew, who take less traditional paths into their fields. 

Andrew expressed concerns over the lack of opportunities, such as internships, offered to 

transfer students. STEM educators could expand their reach if they could encourage 

marginalized students such as Andrew. 

To understand teacher decision-making, researchers need to understand why teachers act, 

think, and respond in particular ways to student learning (Bukor, 2013). Andrew’s counter-

narrative seeks to add to this understanding of how teachers’ personal experiences contribute to 

their beliefs about teaching and classroom practices. This understanding may be useful to teacher 

educators, those designing professional development for in-service teachers, or those working 

with developing graduate teaching assistants. It reminds teachers that learning mathematics is not 

a race and may prompt them to reflect on their own personal experiences. 
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We face a research paradox in mathematics teacher education (Ko, Yee, Bleiler-Baxter, & 

Boyle, 2016) where we desire to produce teachers with strong content knowledge of 

mathematics, but we also desire for teachers to have the experience of the productive struggle 

(Warshauer, 2011) within mathematics so that they are able to relate to their students’ struggles. 

Our results showed that Andrew’s attitudes and dispositions towards teaching were grounded in 

his personal experiences; we see his empathy and caring for his students’ also stems from his 

struggles. Thus while Andrew is a counter-narrative with respect to his life’s journey, he can be 

an ideal candidate for teacher education. 
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Sandbox style video games, such as Minecraft, are an increasingly popular technology in 
classrooms. However, when such gaming environments are used during mathematics instruction, 
teachers’ instructional goals are oftentimes at odds with students’ agency to pursue self-directed 
activity. By acknowledging that agency is a powerful force that should be honored but perhaps 
also negotiated, this research seeks to identify the essential elements of the design and 
implementation of tasks that generate a space for mathematical activity in which both teachers 
and students are afforded agency and have the capacity to exercise it. 
 

Background: The Relationship between Agency and Gaming 

At its essence, agency can be thought of as the capacity for an individual to make choices 

based on their own free will without constraints placed on them by external factors or structures, 

such as social class, gender and ethnicity. Within the classroom environment, agency can 

manifest itself in a variety of ways. Relational agency, for instance, refers to the ability to 

“engage with the dispositions of others” (Edwards & D’arcy, 2004, p. 147). By flipping the roles 

of students and teachers in a bilingual classroom, Edwards and D’arcy (2004) found changes in 

both the power relationship between students and teachers, as well as the very way students 

thought about language competency. Agency can also be thought of in terms of changes to what 

it means to be a member of a classroom (Rainio, 2008). A teacher may, for instance, choose to 

give up managerial control of their classroom to students in order for them to manage their own 

learning. Such student-centered approaches and loosening of classroom control may enable 

students to manage their own learning through opportunities to teach their fellow classmates or 

engage in collaborative research.  

Sandbox Style Games as a Space for Agency Creation 

One might wonder what resources might be used in the mathematics classroom to design and 

implement tasks that not only teach content but also create an agentive space for students. Due to 

the inherently open nature of their game play, one potential solution may be “sandbox style” 

video games, which typically provide users with “tools to create their own environment and 

goals” (Williams, 2010, p. 15). Minecraft is an open-space environment with graphics that are 

purposefully “blocky” and provide a “visual allusion to LEGO™” that “suggests a space in 
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which the player is given free rein to create whatever he or she wishes from the pieces provided” 

(Duncan, 2011). Players use different types of blocks and tools to build structures of their 

choosing. There is no sense of “winning” and “losing” because players pursue goals that they 

themselves set such as exploring a certain part of the world or building a structure they designed. 

While the potential may exist for sandbox style games to create an agentive space in the 

mathematics classroom, there has been little research into how to best design tasks for such 

environments and implement them in the classroom. A survey study by Takayama (2008) found 

that 74% of K-8 teachers use digital games in their instruction, and as this number continues to 

increase, it is necessary to research the ways in which teachers can delicately balance a variety of 

obligations that greatly influence the design of tasks and how they are implemented (Herbst, 

2003). An example is understanding how to achieve a balance between the instructional goals of 

the teacher and the goals of students’ self-directed activity when such gaming environments are 

utilized in the classroom (Hoyles & Noss, 1992). This conflict of goals has been deemed the 

“play paradox” (Hoyles & Noss, 1992, p. 47): the ways students explore and solve a problem 

may not lead to the mathematics content the teacher planned or desired. Even if “mathematical 

nuggets” are carefully planted, the students may still ignore them and pursue an avenue of their 

interest rather than the intended content. 

With these concerns in mind, this research seeks to address the following question: What are 

the characteristics of sandbox-style mathematics tasks that honor both students’ agency to pursue 

self-directed activity and teachers’ agency to pursue instructional goals? 

Methods 

We use a design-based research methodology (Barab & Squire, 2004; Brown, 1992; Collins, 

Joseph & Bielaczyc, 2004) aiming to understand the “learning ecology” (Cobb, Confrey, Lehrer, 

& Chauble, 2003) of Minecraft as a space for agency and mathematical activity. We designed an 

initial set of four tasks (Figure 1) for use in Minecraft by drawing on students’ everyday 

experiences with building and making and exploring existing mathematical tasks designed for 

Minecraft. Our tasks were designed using the task design features of Ainley, Pratt, and Hansen 

(2006) and Stein, Grover, and Henningsen (1996), such as emphasizing the purpose and utility of 

mathematics and allowing multiple-solution strategies. 
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Figure 1. Screenshots from the four tasks. 

Each of the four tasks pictured above was contextualized as revitalizing an imaginary world 

named “CraftLand” and embedded with mathematics content. The Stone Pile task asked students 

to find the volume of a rather large pile of stone. The House Building task placed a supply 

restriction on students: they were tasked to build a house for CraftLand that had a base perimeter 

of 36 blocks. The Goat Tower task asked students to consider out how they might be able to 

create a circular-based structure in the otherwise “blocky” gaming environment and examine 

how scaling the tower to a larger height would impact the number of stairs that wrapped around 

it. The final task, Staircase, presented students with a multilevel structure without any stairs. 

Their objective was to create stairs between the floors that went from one spot indicated by a 

color to another colored spot in such a way that minimized the blocks used. 

We conducted teaching experiments (TE) (Confrey & Lachance, 2000) in order to modify 

and refine this set of tasks. The TE consisted of ten one-hour sessions, with a small group of five 

students (four 4th grade students and one 5th grade student). These students were enrolled in a 

STEM summer camp and were chosen because they had worked with Minecraft before and were 

familiar with the environment. While the tasks presented did not require previous experience 

with Minecraft in order to be successfully completed, we deliberately chose students with 

experience to minimize time spent explaining the gaming environment. The primary data source 

was video recordings of both classroom discourse and computer interactions.  

Analysis and Coding 

Ongoing analysis began with the formulation of research-based initial conjectures before the 

TE and these evolved throughout the duration of the design study (Cobb et al., 2003). In this 

paper, we focus on the retrospective analysis we conducted at the end of the TE aiming to 

capture the extent to which the task design generated a space for agency. The unit of our analysis 

was the interactions of the students within the Minecraft space. To describe the nature of these 

interactions, we used Rainio’s (2008) framework for analyzing the development of agency 

empirically which identifies three types of students’ actions in a learning environment (Table 1). 

Stone Pile task House Building task Goat Tower task Staircase task
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Table 1  

Distinguishing between Interactions and Non-interactions 
Classification Type of action Evidence by giving examples from the data 

Interaction Initiative: Student shapes the flow 
of the gaming activity for not just 
the student who took the action, but 
others in the classroom and gaming 
environment as well. 

Students ignoring the teacher’s intended learning 
task and instead exploring the world on their own 
and completing tasks they created on their own. 

Non- interaction Responsive: Student follows typical 
classroom norms. 

Everyday classroom actions, such as answering a 
question posed by the teacher, following 
instructions or performing an action when asked 
(such as sharing a strategy to solving a problem). 

Passive: Student is not responding 
to the actions of those around them, 
whether in the gaming environment 
or in the classroom. 

When a student, John, proceeded to count the 
number of blocks in a stone pile without asking 
questions or interacting with other students, he was 
acting passively. 

 
We share Rainio’s (2008) view that “even though being passive and responsive can produce 

some agency for the participant in the context of their being students in school, it does not reveal 

anything about the student’s agency in the local emerging activity” (pp. 123–124). Consequently, 

an interaction was identified only if it showed an initiative action. After delimitating the data into 

interactions and non-interactions, the next step was to characterize the types of interactions. 

Ranio describes four main types of initiative actions (interactions): supporting, constructing, 

deconstructing, and resisting (Table 2).  

The first two, constructing and supporting, are indicators that an agentive space has been 

created, that is, students are asked to do things and willing to do them. It is worth mentioning 

here that in some cases, there were interactions that followed these constructing initiatives that 

fell into the category of supporting initiatives. For instance, many times, either while in the 

process of carrying out their strategy or after they successfully completed it, they supported their 

fellow students who were unable to solve the task by explaining what they did and why. The 

remaining two types of initiatives, deconstructing and resisting, provide evidence for 

disengagement, or a lack of agency. During the retrospective analysis, we first identified the 

interactions in the TE, and then sorted those interactions into the above categories. The count of 

interactions, as well as the count of the type of interactions, showed the degree in which the task 

design generated a space of agency. 
Table 2 
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Distinguishing between the Types of Interactions 
Degree of Agency Type of interaction Evidence by giving examples from the data 

Indicators that an 
agentive space has 
been created; students 
are asked to do things 
and willing to do 
them. 

 

Supporting: Interactions 
where students assisted each 
other with an issue or provided 
some sort of evidence-based or 
verbal support for a potential 
solution to a problem. 

Evidence of a community of mutual trust between 
students, such as seen in this exchange between two 
students, John and Abe, and the instructor: 

John: I’m stuck in a well. Seriously.  

Instructor: You are? 

John: Yes. Abe, can you help me? 

Abe: I’m helping you. 

Constructing: Interactions 
where a student developed 
some sort of new strategy or 
participated in an event that 
actively contributed to the 
activity and changed the flow 
of it for the other students. 

Evidence of various approaches that students took to 
solve a task, such as finding the volume of a big stone 
pile. Two examples of this include John electing to dig 
through the pile to ensure it was solid, and Abe 
building a structure nearby as “stairs” to get a different 
view. 

Indicators for 
disengagement, or a 
lack of agency. 

Deconstructing: Interactions 
aiming to disrupt the flow of 
the gaming environment. 

 

Evidence of disrupting behavior, for instance, while 
students were working on the stone pile task in the 
Minecraft environment, John wandered off into the 
world, away from the task at hand, and found a chest 
with tools meant to be shared with his classmates. He 
refused to share these tools with his classmates, thus 
disrupting the flow of the game for the other students. 

Resisting: Interactions where 
the student acts in defiance of 
the power holder, mainly the 
teacher. 

 

Evidence of students ignoring the teacher’s intended 
learning task and instead exploring the world on their 
own and completing tasks they created on their own, for 
example: 

Instructor: Did you girls read the instructions?  

Carla: No.  

Maya: No, it has to be a circle.  

Instructor: It has to be a circle, right? So, how are you 
going to build a circle?  

Carla: We are making a rectangle. 

 
Findings 

The two tasks that seemed to generate the greatest space for agency were the Stone Pile Task 

and House Task, as evidenced by the greater number of Supporting and Constructing Interactions 

(Table 3). Deeper analysis of video data identified specific characteristics of both tasks that 

contributed to the creation of an agentive space. In both of these tasks, students were presented 

with an authentic situation which allowed for multiple paths to a solution. Of particular note is the 

comparatively small number of Resisting Interactions for the Stone Pile Task and correspondingly 

higher number of Constructing Interactions. In fact, of all of the tasks created, we saw, by far, the 
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greatest variety of approaches for this task, demonstrating a high-level of student engagement and 

high potential for students to shape the flow of the activity (Stroup, Ares, & Hurford, 2005). The 

approaches varied widely, ranging from simply counting the blocks on one layer and multiplying 

by the height, to digging inside the pile to confirm that it was solid, to building additional nearby 

structures to gain a perspective on the pile from above. We therefore conjecture that perhaps the 

Minecraft gaming environment may be particularly suitable to tasks with multiple pathways and 

an agreed upon endpoint (Stroup et al., 2005) 

 Table 3 

Interaction Classification for Tasks 

Task Name Supporting Constructing Deconstructing Resisting 
Stone Pile 3 3 1 1 
House Building 4 1 2 3 
Goat Tower 2 1 1 4 
Staircase 2 1 0 3 

 
Interestingly, regardless of the ultimate amount of agentive space created, we saw a 

significant number of Supporting Interactions, mainly students engaging in self-initiated 

conversations with each other about their various solution paths. For instance, the following 

interaction occurred while working on the Goat Tower task, a task that saw a rather large number 

of Resisting Interactions and a relatively lower number of Supporting and Constructing 

Interactions compared to the other tasks: 

Abe: O.K. So, [Maya] you have to make all the sides even, which you didn’t do. (….) Here, I 

will draw it out for you. (…) [Draws a pattern on the board] So, go like this and that and that 

and that and that and that and that.  

[Maya attempts to follow Abe’s solution] 

Abe: That’s not even, at all. This isn’t even, Maya. 

This short exchange demonstrates the potential tasks within the Minecraft environment may 

have in developing a sense of community. Not only did Abe feel comfortable enough to 

voluntarily share his proposed solution, but he also followed-up with his fellow student to ensure 

they were on the right track. In turn, the solution he presented shaped the activity for entire class. 

One of our humble theories (Cobb et al., 2003) is that the ability to easily integrate tasks with 

multiple pathways to an agreed upon endpoint may promote a sense of collegiality among 

students and lead to the types of supportive and constructive interactions demonstrated here.  
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With that said, even interactions that fell into the Deconstructing and Resisting categories 

provided some significant lessons. For instance, we observed that students were not as 

responsive to Supportive or Constructive Interactions when they were initiated by a teacher. The 

idea of their own, personal Minecraft time was sometimes at odds with requests made to them by 

the facilitators. Most commonly this played out when students refused to engage in a 

conversation with the facilitator about how they came to their solution. For example, 

Facilitator: How did you do that? [constructing a tower during the Goat Tower task] 

Abe: You just do diagonal. 

Facilitator: How did you do that? What do you mean by diagonal? […] You are not sharing 

your secret, Abe? 

Abe: No. 

After seeing similar instances across all tasks, we conjecture that tasks in the Minecraft 

environment must be designed in such a way that blurs the distinctions students might make 

between their expectations for the kind of engagement they enjoy at home and the kind they 

expect at school. Students see it as a violation of their agency when they are asked to leave the 

gaming environment to explain themselves, thus losing their precious game time. To limit the 

frequency of these interruptions, we envision features of tasks that develop a student’s 

investment in a well-developed in-game character who frequently must explain his or her 

reasoning within the game. For instance, immersing students in an engaging, coherent storyline 

where it is natural that they explain their reasoning may encourage them to transfer that tendency 

outside of the gaming environment and into other more formal mathematical experiences. In this 

way, students should begin to think of their time in this role as agentive “Minecraft time” and not 

as a task that tends toward alienation.  

Conclusion 

The results of this ongoing research demonstrate that the Minecraft environment may allow 

teachers to create tasks with certain characteristics that honor both student and teacher agency. 

As the literature shows, an increasing percentage of teachers wish to integrate games into their 

teaching, and there is a significant gap that exists in identifying successful task design principles 

and implementation for gaming environments that aim to respect both the teacher’s instructional 

goals and students’ agency to pursue self-directed activity. Going forward, the findings presented 

here serve as a guide towards revising and expanding this original set of tasks. The various 
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conjectures presented here will be tested and correspondingly revised based on the findings from 

future iterations of these tasks. The ultimate goal is to conduct several of these teaching 

experiments in order to develop a Sandbox-Style Mathematical Tasks framework. This 

framework of both task design and implementation will be built based on the features of the tasks 

that showed to have honored the agency of both students and teacher.  
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Garnering different kinds of data from students about their perceptions of mathematics helps 
teachers, teacher leaders, districts and researchers better understand students’ perceptions. In 
this study, we investigate and compare students’ perceptions of doing mathematics from samples 
of students from the United States, China, and Fiji. We administered the Draw Yourself Doing 
Mathematics instrument developed by Bachman, Berezay, & Tripp (2016) to students at three 
grade levels in China, Fiji, and the United States of America. Statistically significant differences 
among perceptions in the three countries and the three grade levels were observed.  
  

At a very young age children are encouraged to draw in order to develop their fine motor 

skills, stimulate their brains, and cultivate their creativity. Whether drawing lines and circles or 

drawing a picture of where a child lives, each picture tells the viewer something about the child 

(Farland-Smith, 2012). Borthwick (2011) shares that “psychologists and art therapists have used 

drawing for years as a way of gathering information about emotional and psychological aspects 

of children” (p. 38). As upper elementary, middle, and high school students are still developing 

their vocabularies and means of expression, using drawings to empathize and gage their 

perception of a situation can be very effective (Aguilar, Rosas, Zavaleta, Romo-Vázquez, 2016, 

Finson, Beaver, & Cramond, 1995, Weber & Mitchell, 1996). In support of this assertion, Briell, 

Elen, Depaepe, & Clarebout (2010) state, “drawings may provide a unique and valuable route of 

expression even for the older participant who might find it difficult to express such abstract 

beliefs in verbal or written words articulately” (p. 662) showing that drawing is a valuable tool to 

gain insights into students’ worlds in the all grades. 

In addition to drawings being viable tools for assessing students of varying ages they have 

also been used to inform researches about students’ perceptions across cultures. Several studies 

have been done internationally with students as participants. Some examples include Mexico 

(Aguilar et al., 2014), England (Borthwick, 2011), Belgium (Briell et al., 2010), Canada and 

Australia (Chamber, 1983), as well as Finland and Russia (Räty, Komulainen, Skorokhodova, 

Kolesnikov, & Hämäläinen, 2011). However, only two of these studies compared drawings 

across cultures. Räty et al. (2011), comparing students’ drawings of intelligence in Finland and 

Russia, found “cross-nationally shared” (p. 17) elements. Similarly, when comparing the 
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drawings of French speaking versus English speaking Canadian students, Chambers (1983) 

found the drawings to be “very much alike” (p. 262). Therefore, drawings can be a good source 

of data for exploring perceptions across cultural lines. In this study, we used drawings to 

investigate the following research questions:  

RQ1: What are the differences, if any, among students in the same grade level in the United 

States, Fiji, and China in perceptions of doing mathematics as measured by the "Draw Yourself 

Doing Mathematics" instrument? 

RQ2: What are the differences, if any, among students from different grade levels from the 

same country in perceptions of doing mathematics as measured by the "Draw Yourself Doing 

Mathematics" instrument? 

Related Literature 

The study presented here further develops Bachman, Berezay, & Tripp’s (2016) Draw 

Yourself Doing Mathematics Test in which students enrolled in a traditional introductory 

collegiate mathematics course as well as students enrolled in a course pairing mathematics and 

dance completed drawings at the beginning and conclusion of the semester. The samples were 

openly coded for affective elements indicating students’ perceptions of doing mathematics. 

Numerical values were assigned to these open codes which were used to score each sample. 

Bachman et al.’s (2016) results comparing pre and post test scores of the students between 

classes showed the course to be effective.  

The Draw Yourself Doing Mathematics Test heavily relied on the work of Chambers’ (1983) 

and Finson et. al. (1995) Draw a Scientist Test assessing children’s stereotypical beliefs of 

scientists by asking them to simply draw what they believed a scientist looked like. Farland-

Smith’s (2012) Development and Field Test of the Modified Draw-a-Scientist Test and Draw-a-

Scientist Rubric extended Finson et. al.’s (1995) research by combining the drawings aspect with 

an additional set of questions asking for additional information about a student’s drawing. This 

additional information eased the scoring process for the appearance, location, and activity 

categories.  

Research involving students’ drawings has been extended into Science, Technology, 

Engineering, and Mathematics (STEM) fields since the work of Chambers (1983). For example, 

Thomas, Colston, Ley, DeVore-Wedding, Hawley, Utley, & Ivey (2016) developed a rubric for 

assessing fourth and fifth grade students’ knowledge and understanding about the work of an 
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engineer. Some extensions into the branch of mathematics parallel Chambers (1983) and Finson 

et. al. (1995) such as assessing high school students’ and adults’ images of mathematicians 

(Aguilar et al., 2016; Rensaa 2006). However, others diverged from the original test extending 

the applications of drawing to include assessing the affective elements present as collegiate 

students draw themselves doing mathematics (Bachman et al., 2016), primary students’ 

perceptions of and attitudes towards their mathematics lessons (Borthwick, 2011), as well as 

preservice teachers’ mental models of mathematicians doing math (Wescoatt, 2016).  

Using drawings as a data source has also been extended more generally in education (Briell 

et al., 2010; Räty et al., 2011; Weber et al., 1996). Drawings are a way to allow students to 

naturally express their perceptions of experience that involve learning and growing in a new 

knowledge, such as mathematics. As a data source, drawings are considered to be similar to text 

and frequently coded in the same way text is coded (Weber et al., 1996). For this reason, we 

chose drawings as a way to inquire about students’ perceptions of doing mathematics. 

Methodology 

Participants 
This study took place in three different countries: The United States of America, China, and 

Fiji. The participants were students from grades 5, 8, and/or 10/11 who were taking mathematics 

courses in that grade. Table 1 shows the number of participants from each country and their 

respective grade levels. Each participant submitted only one drawing.  

Procedure 
Drawing upon the work of Bachman et al. (2016) we gave the participants the prompt “Draw 

yourself doing mathematics. Don’t worry about the quality of your drawing. Just sketch what 

comes to mind.” The authors partnered with teachers who wanted to better understand their 

students’ perceptions of doing mathematics. With the oversight of the first author, the teachers 

administered the prompt to their students without a time limit. Teachers distributing the 

assessment in all countries were instructed that all samples should remain anonymous. Teachers 

were instructed to inform participants that they were able to include words to explain their 

drawings, but that a drawing must be present. Following implementation, drawings were 

collected and numbered. Any drawings that did not have a viable sketch were thrown out to 

prevent bias in the analysis. Such drawings included those that did not have any people, usually 
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only math figures, in them. Once all drawings were numbered and vetted, the rubric was applied 

to the remaining drawings.  

The first two authors of this research are native USA citizens and have studied the education 

systems and cultures of China and Fiji. Their study of these systems included travelling to China 

and Fiji, interacting with students, teachers, and education professors as well as visiting schools. 

Unlike the USA and Fiji, China does not have English as its primary language. Therefore, prior 

to coding, drawings from China which contained any language or symbols other than English 

were interpreted by two linguistic and cultural experts. Both of these experts are native Chinese, 

have lived in both the United States and China, and speak both Chinese and English fluently. The 

text in these drawings was translated into English and any cultural references were explained to 

the first two authors.  

To ensure fidelity of rubric coding, the first two authors conducted meetings for the purpose 

of establishing within-group interrater agreement. The first two authors independently coded 

10.40% of the data (31 of 298 drawings) with samples that were chosen using a random number 

generator. The expected minimum for interrater agreement is rwg = .9 (James, Demaree, & Wolf, 

1993). Interrater agreement exceeded this minimum as rwg =.9355.  

Instrument  

The Draw Yourself Doing Mathematics Rubric was adapted from the coding process of 

Bachman et al. (2016). This rubric uses a seven point Likert scale to assign a numerical value to 

each drawing. These numerical values also have corresponding categorical values: severely 

negative, negative, unpleasant, neutral, pleasant, positive, and extremely positive. The 

assignment of a specific numerical and categorical value is determined on a set number of 

positive and negative components within the drawing. The presence of negative components, 

Confusion, frustrations, overwhelmed, question marks, frowns, etc., correspond to lower scores 

of three or two. Expletives, statements of hate or other intense negative emotions or actions 

acquire the lowest possible score of one. The presence of positive components, smile, positive 

thought bubble, indication of understanding, etc., receive scores of five or six depending on the 

frequency of the components. Similarly, elations, statements of love, and other intense positive 

emotions or actions, receive the highest score of seven. Through these categorical values, we 

establish the degree that participants positively or negatively perceive doing mathematics. 

Evidence for the numerical and categorical value of the drawing is recorded as well as any 
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additional comments pertinent to the sample. The above mentioned criteria were analyzed within 

and across the three different countries. 

Data Analysis 

Excel was used to produce relative frequency histograms of rubric scores for each of the six 

classes. Minitab was used to compute basic descriptive statistics for each class including sample 

size, mean, median, interquartile range, and standard deviation. 95% confidence intervals for the 

means and medians were also computed.  

RQ1 and RQ2 are testing for evidence of a higher average positive perception level in a 

specific class than in another versus a null hypothesis of no difference. Therefore, we are using a 

series of one-tailed two sample tests. Since the underlying distribution of scores is inherently 

ordinal in nature, the non-parametric Mann-Whitney test for difference in median was used as 

the primary test. The Mann-Whitney test does not have any normality assumptions on the 

underlying distribution. However, since all but one of the subgroups have sample sizes larger 

than 30 and the distributions of individual scores were examined to be mound shaped, the 

distribution of mean rubric scores is close enough to a normal distribution to be approximated 

well by a normal curve. This satisfies the assumptions for a t-test, thus one sample t-tests were 

used to provide corroborating evidence of a positive difference in mean. An alpha level of .05 

was used for all hypothesis tests. 

Results 

Summary statistics for each class are tabulated in Table 1. 

Table 1: Summary Statistics for Rubric Scores by Country and Grade Level 
Country  United States  Fiji  China 
Grade  5 8 10-11  5 8  8 
Sample Size  18 52 44  39 37  108 
Median  4.5 

[4.0, 5.0] 
4.0 

[4.0, 5.0] 
4.0 

[4.0, 4.0] 
 4.0 

[4.0, 5.0] 
4.0 

[3.0, 4.0] 
 3.0 

[3.0, 4.0] 
Mean  4.6 

[4.2, 5.0] 
4.3 

[3.9, 4.6] 
3.8 

[3.4, 4.3] 
 4.2 

[3.9, 4.6] 
3.5 

[3.1, 4.0] 
 3.2 

[3.0, 3.5] 
IQR  1 1 2  1 2  2 
Standard 
Deviation 

 0.85 1.21 1.61  0.99 1.26  1.35 

   
RQ1: The data provided evidence that for the same grade level, perceptions of doing 

mathematics in the United State are higher than those in Fiji and those in Fiji are higher than 

those in China. This is evidenced by the mean scores of both the fifth grade participants: United 
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States 4.6 and Fiji 4.2, and the eighth grade participants: United States 4.3, Fiji 3.5, China 3.2. 

However, hypothesis tests had to be performed to determine if these differences were statistically 

significant. Table 2 provides the p-values for tests for significance of differences in center for the 

four possible pairings of data groups at the same grade level. From the p-values from the Mann-

Whitney tests, we see that eighth-grade US participants scored significantly higher than their 

counterparts in either Fiji (p = 0.004) or China (p = 0.000). US fifth graders vs. Fiji fifth graders 

produced a p-value of 0.112, and Fiji eighth graders vs. China eighth graders produced a p-value 

of 0.098. Therefore, these pairings were not significantly higher at this grade level. 

Table 2 

One-tailed Hypotheses Tests Pairs of Subgroups 
Groups Compared Mann-Whitney (p-value) t-test (p-value) 
US 5 vs. Fiji 5 0.112 0.099 
US 8 vs. Fiji 8  0.004 0.004 
Fiji 8 vs. China 8 0.098 0.112 
US 8 vs. China 8 0.000 0.000 

 

On the other hand, at the eighth-grade level there is enough evidence to support the 

conclusion that participants in the United States have more positive perceptions of doing 

mathematics as measured by this instrument than their counterparts in either Fiji or China.  

RQ2: Note that in Table 1 there is data from three different data groups from the United 

States; grade 5, grade 8, grade 10-11. The mean rubric scores for these three data groups are as 

follows: US 5=4.6, US 8=4.3, US 10-11=3.8. We also have data for two data groups from Fiji; 

FJ 5=4.2 and FJ=3.5. This, along with a visual inspection of the histograms from each country in 

Figure 1, suggests that older students’ perceptions of doing mathematics were more negative. 

We now examine the results of the Mann-Whitney tests found in Table 2 to determine if the 

data indicates significant support to reach this conclusion. The data gives evidence that US fifth 

grade participants have significantly more positive perceptions of doing mathematics than US 

tenth-eleventh grade participants (p = 0.022). Fijian fifth grade participants also have 

significantly more positive perceptions about doing mathematics than the Fijian eighth grade 

participants (p = 0.007). However, the comparisons of US fifth grade participants to US eighth 

grade participants (p = 0.188) and US eighth grade participants to US tenth-eleventh grade 

participants (p = 0.053) is not statistically significant. 
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In the case of US participants, there is enough evidence to support the conclusion that 

participants in the fifth grade have more positive perceptions of doing mathematics as measured 

by this instrument than participants in the tenth-eleventh grade. Similarly, there is enough 

evidence to support the conclusion that Fijian fifth grade participants are more positive about 

their perceptions of doing mathematics as measured by this instrument than Fijian eighth grade 

participants. Although there is some evidence to suggest that US fifth grade participants also 

have more positive perceptions than eighth grade participants, and US eighth grade participants 

have more positive perceptions than tenth-eleventh grade participants, the evidence provided 

here is not strong enough to reach that conclusion.  

We note that if two-tailed tests had been used in each of the analyses above, the p-values 

would have been twice as large. However, the analysis of the data would not lead to different 

conclusions. Similarly had t-tests been used instead of Mann-Whitney tests no differences in 

conclusion would have been reached. 

Discussion 

The data for the study was gathered from a convenience sample of students at schools which 

were familiar to the first two authors. These samples are small and not representative of the 

countries as a whole. Our use of the country names in this article is only for the purpose of 

categorical necessity and are not used to imply that these results are indicative of students in each 

nation as a whole. Due to the space limitations of the proceedings we would like to note that we 

plan the following topics for discussion during the presentation. Further thoughts on data results 

and its implications about student’s perceptions, benefits of the assessment for teachers and 

teacher leaders, and further study. Additionally, several drawings from each category will be 

shared during the presentation as it was not feasible to place these pictures in the proceeding. 

Lastly, we will also share our seven-point Likert scale rubric. 
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The purpose of this study was to investigate the construct relevance, construct representation, 
and age appropriateness of the items developed for the Early Grade Mathematics Assessment 
Relational Reasoning and Spatial Reasoning subtasks in order to provide validity evidence based 
on content. A content review was conducted with four experts, and results from the review 
suggest that there is moderate evidence that the items developed for the subtasks are 
representative and relevant to the assessed constructs and appropriate for students in Grades 1-
3.  

Early mathematics knowledge lays critical groundwork for future mathematics success 

(National Association for the Education of Young Children & National Council of Teachers of 

Mathematics, 2002) and is also predictive of reading achievement (Duncan et al., 2007) and 

future socioeconomic status (Ritchie & Bates, 2013). Number sense, including numeric relational 

reasoning, and spatial sense are often recognized as two of the pillars of early mathematics 

education (Clements, 2004; National Research Council [NRC], 2009). Both numeric relational 

reasoning and spatial reasoning are correlated with future mathematics achievement and are 

foundational to the development of advanced mathematics concepts (Aunio & Niemivirta, 2010; 

Fennema & Sherman, 1977; McGee, 1979; Nunes et al., 2007). Because of this, assessments 

should exist to measure students’ abilities in these domains to provide educators with valuable 

information that can be used to intervene and modify instruction. 

While numeric relational reasoning and spatial reasoning are critical concepts for early 

childhood, few assessments exist that focus on measuring these constructs in young children 

(Perry, 2016). A few early numeracy assessments, such as the Research-Based Early Maths 

Assessment (REMA) (Clements et al., 2008) and the Preschool Early Numeracy Skills (PENS) 

Test (Purpura & Lonigan, 2013), include items that assess numeric relational reasoning concepts 

such as decomposition. However, these assessments include many other concepts and do not 

focus on numeric relational reasoning. Therefore, specific interpretations cannot be made about 

students’ numeric relational reasoning abilities. While a few spatial reasoning assessments are 

available for young children (e.g., Picture Rotation Test [Quaiser-Pohl, 2003] and Children’s 

Mental Transformation Task [Levine, Huttenlocher, Taylor, & Langrock, 1999]), the items on 

these assessments do not fully represent the construct of spatial reasoning. Spatial reasoning 
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includes both spatial visualization and spatial orientation in both two- and three-dimensions 

(Bishop, 1980) and both should be represented on a spatial reasoning assessment.  

Addressing this gap in available assessments, items were developed by RTI International in 

2013 with funding from the United States Agency for International Development (USAID) to 

construct two new subtasks for the Early Grade Mathematics Assessment (EGMA), a Relational 

Reasoning subtask and a Spatial Reasoning subtask. The EGMA is currently comprised of eight 

subtasks that focus on number and operations concepts and has been used in 22 countries to 

determine overall student performance and improve instruction and learning in Grades 1-3 

(Platas, Ketterlin-Geller, Brombacher, & Sitabkhan, 2014; RTI International, 2015). Because the 

new subtasks have the potential to be used worldwide, it is imperative that the validity of the 

interpretations made using the scores from the new subtasks be evaluated. This study focused on 

investigating the validity evidence based on test content for the Relational Reasoning and Spatial 

Reasoning subtasks and had one primary research question: To what degree is the content of the 

Relational Reasoning and Spatial Reasoning items age appropriate and representative of and 

relevant to the constructs of numeric relational reasoning and spatial reasoning, as measured by 

the expert judgment of mathematics education experts?  

Related Literature  
The most central consideration when developing or evaluating assessments is validity 

(American Education Research Association, American Psychological Association, & National 

Council on Measurement in Education, 2014). Validity is not a property of a test itself but 

instead is the degree to which the interpretations made using a test score are appropriate, 

meaningful, and useful (Downing & Haladyna, 1997). The intended interpretations made using a 

test score rest on certain assumptions (Kane, 1992), which must be supported with evidence that 

can then be evaluated to determine the validity of the interpretation.  

For the EGMA Relational Reasoning and Spatial Reasoning subtasks, one of the primary 

assumptions that links a score on the subtasks to the primary interpretation of determining 

overall student performance is that the content on the subtasks is age appropriate and 

representative of and relevant to the constructs of numeric relational reasoning and spatial 

reasoning. This assumption represents the core of content-related evidence of validity. The 

content of the items on an assessment should be relevant to and representative of the constructs 

of interest (Messick, 1989), which means that the items test the construct in important ways 
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(Haladyna & Rodriguez, 2013) and include all components of the construct. Additionally, the 

content should be age appropriate to prevent the introduction of construct irrelevant variance.  

Multiple rounds of discussion and pre-pilot testing occurred to consider how to best assess 

numeric relational reasoning and spatial reasoning. A group of mathematics education, 

international education, and measurement experts suggested possible item types during an expert 

panel for EGMA (Platas et al., 2014). After a thorough literature and assessment review, two 

item writers constructed sample items. These items were pilot tested individually to a few 

students to determine if the items were clear and solicited students’ numeric relational reasoning 

or spatial reasoning abilities. Based on this information, the item types were revised and 

additional items for each type were developed. 

The items developed for the EGMA Relational Reasoning and Spatial Reasoning subtasks 

were designed to assess the main components of the constructs of numeric relational reasoning 

and spatial reasoning. Numeric relational reasoning is the ability to mentally analyze 

relationships between numbers or expressions (Carpenter, Franke, & Levi, 2003; Farrington-

Flint, Canobi, Wood, & Faulkner, 2007), which prevents the need for lengthy calculations. Three 

main item types (see Table 1) were developed to assess the two primary skills used when 

reasoning relationally, additive composition and number properties.  

Two topics are consistently identified as the primary components of spatial reasoning: spatial 

orientation and spatial visualization (Bishop, 1980; Clements & Battista, 1992; McGee, 1979; 

NRC, 2009). Two item types were developed to assess spatial reasoning (see Table 2).  

Methodology 

To investigate the construct representation, construct relevance, and age appropriateness of 

the items developed for the EGMA Relational Reasoning and Spatial Reasoning subtasks, an 

expert content review was conducted. Four early mathematics education experts reviewed the 

EGMA Relational Reasoning and Spatial Reasoning items. Reviewers had 10-43 years of 

experience in mathematics education and research settings, and each holds a Ph.D.  

Content review forms were developed by the author of the study and were used to record the 

judgments of the experts. The expert reviewers completed an Item Review form and an Overall 

Impressions review form for each subtask. On the Item Review form, expert reviewers rated each 

item’s construct representation, construct relevance, and age appropriateness on a four-point 

scale (1 = not at all, 2 = somewhat, 3 = mostly, 4 = extremely). Reviewers provided written 
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comments on any ratings of 1 or 2. A four-point scale (1 = not at all, 2 = somewhat, 3 = mostly, 

4 = extremely) was also used for the questions on the Overall Impressions review form.  

Table 1 
EGMA Relational Reasoning Item Types 

 
Table 2 
EGMA Spatial Reasoning Item Types 

  
 The expert reviewers’ numerical ratings and comments were analyzed to determine if the 

Relational Reasoning and Spatial Reasoning items represent the constructs of numeric relational 

reasoning and spatial reasoning and are appropriate for students in Grades 1-3. The median 

expert rating was calculated for each item for each category/question on each review form. 

Written comments from the reviewers, if provided, were also examined to determine if common 

themes were present or if certain items were problematic.  
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Findings 

 Relational Reasoning. Based on the expert reviewers’ individual item ratings, overall 

impression ratings, and written comments, there is evidence to suggest that, overall, the EGMA 

Relational Reasoning items are relevant to and representative of the tested construct and age 

appropriate. With regard to individual items, 98%, 98%, and 100% of the items had median 

ratings of 3 or above (i.e., “mostly” or “extremely”) for construct representation, construct 

relevance, and age appropriateness, respectively. The results from the Overall Impressions 

review form also indicate that the experts, as a whole, rated the items on the Relational 

Reasoning subtask as representative, relevant, and age appropriate. Additionally, these results 

indicate that the items are foundational skills for mathematics, assess content predictive of future 

performance in mathematics, and include content that is teachable and common in early grades 

mathematics curricula; these criteria are the self-imposed requirements for the content of new 

and existing EGMA subtasks (Platas et al., 2014).  

While the overall ratings were strong, a few of the ratings indicated potential concerns about 

items or topics, which were further investigated by analyzing the written feedback. Primarily, 

questions were raised about the strategies students may use to solve the visual equivalence and 

symbolic equivalence items. For example, the visual equivalence items model addition and 

subtraction actions with manipulatives instead of numbers or symbols. All four reviewers 

suggested that children would likely perform mental calculations as actions are shown and 

completed by the test assessor, rather than employ numeric relational reasoning to determine the 

number of balls left in the bag. These concerns are also related to the amount of working 

memory required for these items. Students with better working memory may perform higher on 

these items, not necessarily because of their numeric relational reasoning ability but because of 

their working memory ability.  

Additionally, two reviewers questioned whether the symbolic equivalence items should be 

timed to measure fluency (e.g., number correct per minute), which may help determine if 

students are using numeric relational reasoning or taking time to calculate the entire equation 

mentally. If the Relational Reasoning items inadvertently lead students to perform calculations 

instead of relational reasoning strategies, the items may not be assessing the intended construct. 

A few other concerns were raised about the clarity and familiarity of the language used (e.g., 

“equation,” “expression,” “fit”) and about whether students have had adequate exposure to 
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concepts such as decomposition and manipulatives such as balances, which may impact the 

interpretations made using the decomposition items and the multiplicative thinking visual items.  

Spatial Reasoning. There is also evidence to suggest that, overall, the EGMA Spatial 

Reasoning items are relevant to and representative of the tested construct and age appropriate. 

The experts rated all of the items developed for the EGMA Spatial Reasoning subtask as mostly 

to extremely age appropriate and representative of and relevant to the construct of spatial 

reasoning. The ratings on the Overall Impressions review form also mirror these determinations 

and also indicate that the Spatial Reasoning subtask meets three out of the four self-imposed 

requirements for EGMA subtasks (Platas et al., 2014), including assessing foundational skills, 

skills that are predictive of future mathematics performance, and topics that are teachable. 

However, the reviewers noted that the content of the Spatial Reasoning subtask, while 

foundational, is not common to many early grades mathematics curricula.  

While the items were highly rated, three of the four reviewers noted that the language used in 

the three-dimensional and two-dimensional spatial visualization items (i.e., the “same” and “not 

the same”) might be ambiguous and interpreted in different ways by students. Students may have 

different conceptions of what it means for two objects to be the same: same number of blocks, 

exact same arrangement (no transformations), reflection of an arrangement, same structure in the 

same plane, or a rotation or a translation of an object, among others. Distinctions between 

reflections and rotations may be particularly problematic with this language. For example, 88% 

of students said that two figures that were mirror images of one another were the same. The 

ambiguity of the “same” and “not the same” may have contributed to the reviewers rating the 

instructions for the Spatial Reasoning subtask as somewhat clear and understandable.  

Opportunity to learn issues were also raised by a few of the expert reviewers, particularly on 

the three-dimensional items. Both the three-dimensional spatial visualization and spatial 

structuring items involve two-dimensional representations of structures built with cubes. One of 

the reviewers suggested that students may not have previously worked with three-dimensional 

cubes. Students also may not have seen two-dimensional representations of three-dimensional 

objects. If students have been exposed to items of this kind, they may outperform other students 

who have not had similar opportunities. The ambiguity of the language in some of the items and 

opportunity to learn issues may introduce additional factors to the measure that are unrelated to 

the assessed construct. 
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Discussion  

Based on the expert reviewers’ ratings and comments, there is moderate evidence to suggest 

that, overall, the items developed for the EGMA Relational Reasoning and Spatial Reasoning 

subtasks are relevant to and representative of the tested construct and age appropriate. However, 

some of the experts’ comments limit the strength of the evidence for this assumption. Primarily, 

questions were raised about the strategies students may use to solve a few of the Relational 

Reasoning item types, potential ambiguity of the language on the spatial visualization items, and 

whether students have had an adequate opportunity to learn these concepts. Cognitive interviews 

should be conducted to investigate the cognitive processes and strategies used by students on the 

Relational Reasoning items. If students are indeed counting or calculating instead of utilizing 

numeric relational reasoning strategies, the items may not be assessing the intended construct. 

Additionally, the language on the spatial visualization items (i.e., the “same” and “not the same”) 

should be clarified to prevent confusion. Student interviews could assist in determining how to 

best modify the item prompt. With additional research and refinement, the items developed for 

the EGMA Relational Reasoning and Spatial Reasoning subtasks may be promising approaches 

to assessing students’ numeric relational reasoning and spatial reasoning abilities.  
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We explore a new way for students to experience area measurement, what we refer to as 
Dynamic Measurement (DYME). DYME engages students in dynamic experiences of measuring 
2D surfaces by multiplicatively composing two linear measures through ‘sweeping.’ We describe 
the design of tasks that we used for engaging students in DYME experiences and report on 
findings from teaching experiments with six pairs of third-grade students to discuss DYME’s 
potential for developing students’ understanding of area as a continuous quantity.  

Background and Aims 

Previous studies on area measurement focus on covering space with square units and 

quantifying that covering (e.g. Barrett & Clements, 2003; Clements & Stephan, 2004). The 

selection of square units to cover a surface does not naturally occur to children (Battista, 

Clements, Arnoff, Battista & Borrow, 1998; Outhred & Mitchelmore, 2000). Students often 

leave gaps between units, overlap them, double count them or combine units of different size 

(e.g. Lehrer, 2003; Battista et al., 1998); even after extensive covering and tiling activities, 

students still have difficulty drawing square units (Outhred & Mitchelmore, 2000). Furthermore, 

switching from the one-dimensional approach of counting squares as discrete quantities to the 

two-dimensional multiplicative relationship of combining two linear continuous measures in an 

area formula, can be extremely difficult for students (Baturo & Nason, 1996; Kamii & Kysh, 

2006). Piaget, Inhelder & Szeminska (1960) argue that these difficulties arise because “the child 

thinks of the area as a space bounded by a line, that is why he cannot understand how lines 

produce areas” (p. 350). Both Piaget et al. (1960) and Simon & Blume (1994) suggest that 

students need to experience area as a continuous quantity in order to develop a conceptual 

understanding of it. An intuitive way for students to visualize a meaning for area in a dynamic 

way is to view it as a ‘sweep’ of a line segment of length a over a distance of b to produce a 

rectangle of area ab (Confrey, Nguyen, Lee, Corley, Panorkou, & Maloney, 2012) (Figure 1). 

 
Figure 1. Area as ‘sweeping” (reproduction from Confrey et al. 2012) 
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Referring to this dynamic continuous approach to measurement as Dynamic Measurement 

(DYME) distinguishes it from others (i.e. counting units). By considering both length (e.g. of a 

paint roller) and width (e.g. the rolling distance) as attributes that define an area (e.g. the 

generated space), DYME emphasizes the role of dimensions (linear measures) in area 

measurement. Although prior work (e.g. Confrey et al., 2012; Lehrer, Slovin, Dougherty, & 

Zbiek, 2014) identifies the significance of teaching this dynamic approach, little information 

exists about how students’ DYME reasoning can be developed. Therefore, our goal was to 

explore: a) What type of tasks and tools may be used for developing students’ DYME reasoning? 

b) What forms of DYME reasoning are visible and can develop as a result of students’ systemic 

engagement in these tasks? c) How and to what extent may DYME thinking support students’ 

development of area as a continuous structure?  

Methods 
We used a design-based research methodology (Barab & Squire, 2004) to develop 

mathematical tasks and tools, focusing on continuous cycles of design, enactment, analysis, and 

redesign. In formulating initial conjectures about students’ reasoning of DYME, we synthesized 

existing literature on area measurement (e.g. Clements & Sarama, 2009; Confrey et al. 2012) and 

considered their measurement constructs with the spatial structuring of DYME. For example, to 

develop the multiplicative relationship of length x width, most studies begin with the counting of 

individual square units, then counting the units in a row (using repeated addition), then counting 

the units in a row and column and multiplying rows x columns. In contrast, the spatial structuring 

of DYME focuses on visualizing composites of 1-inch paint rollers iteratively dragged over a 

specific distance to cover a surface. A surface is described in terms of the number of 1-inch 

swipes (length) and the distance of each swipe (width). For example, to cover a surface of length 

4 cm and width 7 cm, we need 7 one-inch swipes of 4 cm. Our design promotes student thinking 

about commutativity (e.g. 7 horizontal 1-inch swipes of 4 cm is the same as 4 vertical 1-inch 

swipes of 7 cm) and also reversibility (e.g. constructing surfaces by iteratively dragging 1-inch 

rollers and deconstructing surfaces of length a and width b by equally splitting the surface into a 

sections of length 1 and width b to find area). The target understanding of DYME involves a 

dimensional deconstruction (Duval, 2005), analytically breaking down a 2D shape (its area) into 

its constituent 1D elements (length and width measures) based on relationships. Thus, the two 

quantities (length and width) are coordinated simultaneously when making judgments about size.  
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We used Geometer’s Sketchpad (Jackiw, 1995) and its features to design our tasks. In 

addition to the dragging tool, the trace tool gives a trace of all the points on line segment (paint 

roller) following a locus as they move on the screen. Our conjecture was that the user would 

associate this discrete trace with the continuous surface formed. We conducted a series of 

teaching experiments (TE) (Steffe & Thompson, 2000) to modify and refine DYME materials, 

monitor effects on student learning and document changes in their DYME reasoning. Twelve 

third-graders worked in pairs for 6-9 sessions of 45-90 minutes each. The students represented 

various abilities and all students had some instruction on area as tiling the year before the TE. 

Findings 

We will describe the learning process demonstrated by two students, Isaac and Lara, using 

selected tasks and episodes from their TE. At the beginning of the TE, Isaac and Lara were asked 

to explain length and area and they responded, length is “Times tables. Length times width.” 

Area is “Like if you have a big box, then you find how many boxes are there in it.” Upon 

elaboration, they stated that they “didn’t really understand it.” In contrast to seeing area as a 

space consisting of discrete area units, early explorations in DYME begin by seeing area as a 

continuous quantity. Our early tasks focused on matching shapes by modifying their base and 

height (Figure 2) and coloring surfaces using paint rollers to make connections between roller 

length and height as well as between distance of paint and base (Figure 3). Due to the ambiguity 

of the word ‘length’ we used the terms ‘base’ and ‘height’ in the beginning, and ‘length’ and 

‘width’ later. Students explored the changes to the size of an object when one or both dimensions 

changed. By the end of the tasks, students were able to coordinate the two dimensions as 

attributes to make judgments about size and use the ‘base’ and ‘height’ language to describe 

shapes (e.g. describing the size of a shape as “Its base is 5 cm and its height is 6 cm”). 

 
Figure 2. Modifying an envelope to fit the size of the card 

Researcher (R): So for writing your theory, 
what needs to change and what needs to 
remain the same?
Lora (L): The height needs to change and the 
base needs to remain the same, because it’s 
the same [the base] as the envelope’s.
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Figure 3. Painting and reasoning about the length of the roller and the distance of paint. 

In the next set of tasks, our aim was for students to recognize the multiplicative relationship 

between the length of a roller (height), the distance of paint (base), and the space covered (area). 

Students used a 1-inch roller to paint shapes that had the same base but different heights and 

intuitively began using the multiplicative ‘times’ language to find the space covered as 

evidenced in comments such as “we need three swipes of ten” and “we need to do 10 three 

times” (Figure 4).  

 
Figure 4. Painting walls using 1-inch rollers and reasoning about the amount of space covered. 

Subsequently, they used rollers of different sizes (2-inch, 3-inch, etc.) to paint the same shape 

and explored the amount of space each roller covered by visualizing each ‘large’ swipe as a 

composite of 1-inch swipes (Figure 5). Gradually, students moved from area as painting to area 

R: How big do you need to make the roller? 
L and Isaac (I): We need to make it 8cm.
R: How do you know it’s 8cm?
L and I: Because the height is 8.
I: If the height is 8, so you are gonna want to 
make the length of the paint roller 8cm too so 
that it can match.
R: OK. What do you think would be the 
distance of paint? 
L: I think it’s 10 because they said that the 
base is 10.
I: Because if the base is 10 then the distance 
of the paint should be 10cm.

R: How much space we will cover in this one? [showing the 10 
by 3 wall]
I: I think this is 30.
R: Why?
I: Because the base is 10.
L: Since this is small [the roller] we are going to swipe like that 
and swipe like that and swipe like that …we are going to add 
3 tens
I: You are going to count by tens for three times. [..] And that’s 
the same thing [the fourth shape as the third shape]. It’s just 
that they put it [the roller] there. The difference is that you are 
going up and down.
R: I don’t understand why it’s the same.
L: The height is the same it is 4 and the base is 5.
I: The difference is that you are going up and down and here 
you are going side to side. 
L: We are just counting by 4s here. If you add 4 five times 
then you will get 20 just like that one.
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as base times height as they recognized that the height of a shape shows the number of 1-inch 

swipes and the base shows the rolling distance. 

 
Figure 5. Using different sized grass rollers and soil rollers to cover two parks (1-inch rollers in 
the first and 2-inch rollers in the second). 

Our next goal was to see if students could recognize length and width measures as factors 

that determine area. Students were asked to multiplicatively change (e.g. double, halve) the 

amount of space presented to them and reason about the new dimensions and then the reverse, 

multiplicatively change one or both dimensions, and reason about area (Figures 6 and 7). 

 
Figure 6. Changing the width and recognizing the effect on area. 

[The first park had 1-inch rollers, while the second park had 2-
inch rollers. Students talk about the space of soil in the 
second park]
I: We can do 6… wait…...6 plus 6… then the distance of soil is 
going to be the same.
R: Why did you do 6 plus 6?
I: It’s 6 plus 6 because the height is 2. So you do 2 times 6.
R: Okay…How big is the total park?
L&I: 24.
R: How do you know?
I: Because that one is 24 (first park) and that one is 24 
(second park).
L: They have the same base and the same height.

R: If you change the width of the Snow White dress palace to half what will happen to the area?
L: It would come down. Probably...
I: I think 15 because if you put 15 plus 15 it will be 30.
L: Half and half.
R: Why did you split it?
I: Because the width is changing and it is going to take half away from what it is now and then if you are going to 
take a half away the area is going to come in half.
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Figure 7. Changing the area and recognizing the effect on dimensions. 

Although students were not asked to paint as they did in previous explorations, we provided 

paint rollers as a resource. We found that these rollers became a powerful tool to help students 

visualize the size of covered spaces (see the excerpt in Figure 7) and for transitioning from 

sweeping-based reasoning to reasoning about area as length times width. Students associated the 

software’s discrete trace with the continuous surface that was formed and defined that surface 

using two linear measures. During the final task (Figure 8), students were asked to coordinate 

relative areas by splitting rectangles, such as splitting a rectangle in two right triangles.  

Significance and Next Steps 

This study examined a dynamic way of learning and teaching measurement. Our findings 

show that students avoided the misconceptions presented in prior research and that they were 

able to make meaning of the area formula by visualizing area as a continuous, dynamic structure 

defined by two linear measures: length and width. Among our future goals is to explore how we 

can make the transformation of units (from linear to area measurement units) more accessible to 

students who have not been taught powers before. Additionally, we are currently exploring how 

DYME can be used for extending area measurement to irregular shapes and how this may lead to 

[Students were asked to create a cafeteria with area as ¼ of the garden. Garden's length was 5 and width was 8.]
R: What does one fourth mean?
I: It is a fraction.
L: If we were to split this into 4 parts then one of those parts will be the cafeteria. 
R: How big are you going to make it [the cafeteria]?
I: We are going to make it...The length would be 5 inches and the width is gonna be...
L: 2 inches.
I: It would be 2 inches.
L: Yeah because if we use only one-inch roller then it would go 8 times across. But if you use 2-inch roller then it 
would go 1, 2, 3. And that would go 4 parts.
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the notion of the definite integral of the differential calculus. These findings will contribute to 

research on the teaching and learning of measurement and be useful to both teachers for 

engaging their students in this type of measurement, and the designers of curriculum and 

professional development who wish to support the learning of these ideas.  

 
Figure 8. Finding the area of a right triangle. 
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This study reports a cross-sectional research conducted in a public high school with 187 Grades 
7-12 students enrolled in Math-7 to Calculus. All participants completed the Diagnostic Test on 
Rates of Change (DTRC) - an instrument that included focused problems on various 
representations of rates of change in physical and functional situations. The study found that 
students’ performance on the DTRC test did not show a similar progression in the internalization 
of the concepts of rates of change, and in formulating mathematical structure of functions as 
prescribed in the state curriculum standards.  

 
Many processes in the real world are mathematically described by non-linear relations such 

as polynomial, exponential, logistic, and logarithmic. What is common among these is that the 

growth rate in the dependent variable is not constant, in contrast to a linear relationship. This 

study deals with students’ inherent difficulty in understanding of functions in general, and their 

failure to understand what differentiates a linear function from a non-linear function. The 

purpose of this study was to explore differences and similarities of grade 7 through grade 12 

students’ understanding of rates of change and functions; specifically, the nature of student 

difficulties as they reason, represent, and make connections between various representations of 

rates of change in physical and functional situations involving two co-varying quantities.  

It is important that students understand the concept of rates of change to make sense of different 

types of functions. Muzangwa and Chifamba (2010) observed that students fail to recognize and 

distinguish between various types of functions when they enter higher math courses such as 

Algebra II, Precalculus, and Calculus. One of the difficulties that students have is relating the 

symbolic and graphical representation of rate of change to a written description of a real life 

situation, and they tend not to pay attention to the units to guide them. Many think of average 

rate of change as average in the arithmetic sense and carry a misconception that it is possible to 

calculate instantaneous rate of change exactly from a table of values of a function.  

In order for students to gradually build their conceptual understanding of core ideas central to the 

learning of mathematics, the states have prescribed curriculum standards at each grade level. 

When students’ foundation for the mathematics content knowledge is built on core ideas that are 

part of the mathematics curriculum, and also become part of teaching practices, then students 
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form a robust understanding of mathematics. Mathematical ideas of proportionality, and rates of 

change are core ideas for the study of relations and functions. For this study, the rate of change 

of a function is defined as a ratio that compares the change in the dependent variable to the 

amount of change in the independent variable; 𝑚𝑚 =	 78
79	

. 

Perspective 

Carlson, Oehrtman, and Engelke (2010) identified students’ reasoning abilities and 

understandings central to precalculus, and foundational for calculus. These include a strong 

understanding of rate of change, a process view of function, and the use of covariational 

reasoning. Some school districts require students to earn credits beyond the state minimum to 

graduate from high school. Students in these states take Precalculus or Calculus during high 

school. However, mathematics is not a list of disconnected coursework. Powerful mathematical 

knowledge results from reasoning with mathematical principles coherent in all these specialized 

courses and with progressions of learning that leverage these principles, as students build this 

knowledge over grade levels. The research question for this study, therefore, was: Do students’ 

understandings of rates of change appear to consistently build in a manner that could lead them 

to develop a solid mathematical structure of functions by the end of Precalculus? 

Slope and its various representations are introduced during grades 6-9: all except 

trigonometric and calculus conceptualizations indicating a very broad coverage of the concept 

(Nagle & Moore-Russo, 2014). Grades 7-8 instruction focuses on proportional thinking to 

prepare students for proportional relationships of the form y=kx and linear relationships of the 

form y=mx+b. Grade 9 sets the stage for comparing the constant rate of change of linear 

relationships with the variable rate of change of non-linear (quadratic, exponential etc.) 

relationships. The student understanding that linearity entails repeated addition whereas 

exponentiality entails repeated multiplication is a cognitively challenging concept and students 

take more time to construct this notion in their minds (Ebersbach & Wikening, 2007). Students’ 

success in precalculus course and beyond depends on their understanding covariational 

characteristics of classes of functions through the functional property conception of slope.  

Whereas the rate of change between two covarying quantities is at the heart of the functional 

property conception of slope, students do not necessarily relate increasing and decreasing 

intervals to rate of change (Hauger, 1997). This situation makes it difficult for teachers to 

transition to teaching non-linear concepts in the classroom. De Bock (2002) suggested that 
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students’ prior knowledge of linearity and proportionality is incompatible when they come across 

new ideas such as polynomials and non-proportional problems.  

Methodology 

This study investigated students’ understanding of the concepts of rates of change and 

functions in a public high school in southern part of the United States. The participants were 187 

Grades 7-12 students enrolled in Math-7 to Calculus (AB). Student distribution by grade and 

current mathematics course are presented in Table 1. 

Table 1. Student Distribution by Grade and Current Mathematics Course 

   7   8   9 10 11 12 All 

Math 7 17   0   0   0   0   0   17 

PreAlgebra 28   0   0   0   0   0   28 

Math 8   0 22   0   0   0   0   22 

Algebra I   0 18   6   0   0   0   24 

Geometry   0   0 13 17   0   0   30 

Algebra II   0   0   0   2 11   0   13 

C. Algebra   0   0   0   0   0   5     5 

Statistics   0   0   0   0   0   3     3 

Precalculus   0   0   0   0   4 29   33 

Calculus    0   0   0   0   0 12   12 

All 45 40 19 19 15 49 187 

Note. Rows include participant count by Course and columns include participant count by Grade  
All the participants completed a researcher developed DTRC (Bannerjee, 2016). The DTRC 

construction process began with a careful selection of twenty-six problems based on a very broad 

coverage of rates of change and its various representations. These problems were either adapted 

from the textbooks, from Partnership for Assessment of Readiness for College and Careers 

(PARCC), or written by the researcher. The content validity of the DTRC instrument was 

established by a review from three expert professors of math education to ensure that the items 

on the DTRC were appropriate for measuring students’ understanding of rates of change and 

functions. The expert review resulted in 13 problems that focused on rates of change and its 

various representations in mixed format now used in DTRC. The problems on the DTRC 

addressed Geometric Ratio, Algebraic Ratio, Measure of Steepness, Functional Property, Rate of 
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Change in Covariational Context, Parameter in a Linear Function, Real World Situation, 

Determining Property, and Calculus Conception of slope (Nagle & Moore-Russo, 2014). Figure 

1 shows one of the items on the DTRC. 

 

In 2004, there were approximately 275 students in the Delaware High School band. In 2010, 

that number increased to 305. Find the average rate of change in the number of students in the 

band from 2004 to 2010. 

Figure 1. DTRC Problem #2. 

The DTRC was administered to the participants by their classroom teachers. Students were 

encouraged to show work for each problem on the test booklet. While the use of graphing 

calculator was prohibited, the participants were allowed to use scientific calculator. The response 

data from all the participants were scored by the researcher using the scoring guide. With each 

DTRC problem worth 2 points, the maximum score possible was 26 and minimum score was 0. 

A preliminary score of 0, 1, or 2 was awarded for each problem based on students’ work 

indicating no understanding, partial understanding, or clear understanding respectively. To 

establish the reliability of the scoring guide, 20 randomly selected tests were scored by a second 

rater who had no stake in the study. An inter-rater agreement (Cohen, 1960) was reached among 

raters. Table 2 displays participant’s expected score on the DTRC by math course.  

Table 2. Participant’s Expected Scores on DTRC Corresponding to Math Course. 
Math Course (Course Code) Participant’s Expected Score on DTRC 

Math-7 (MAS)                       ≥   8 points 

Math-8 (MAE), PreAlgebra (PAL)                       ≥ 12 points 

Algebra I (ALG)                       ≥ 16 points 

      Geometry (GEO)                       ≥ 18 points 

      Algebra II (AL2)                       ≥ 20 points 

College Algebra (COA), AP Statistics  

(STA), Precalculus (PCA) 

                      ≥ 20 points 

     AP-Calculus AB (CAL)                       =26 points 

Data Analysis 
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Descriptive statistics were calculated to analyze how DTRC performance varied by grade 

and by current mathematics course. To verify if there is a significant difference in the mean 

scores by grades or by math courses, Welch’s Test for Analysis of Variance (One-way ANOVA) 

including Games Howell Pairwise Comparison and a Simultaneous Test for Difference of Means 

were conducted. Before performing One-way ANOVA, it was verified that sample size for each 

grade level was ≥ 15. The standard deviations for total scores for each grade level were different. 

To verify if these differences were significant, a test for equal variances was performed on total 

scores versus grade level. The result indicated that standard deviations of total scores at each 

grade level were significantly different [i.e., p-value (0.002) < α (.05)]. Consequently, Welch’s 

Test for One-way ANOVA was employed instead of Fischer’s One-way ANOVA that assumes 

equal variances. Games-Howell Test for Pairwise Comparisons of Means, and Simultaneous Test 

for Differences of Means was used in place of Tukey’s Test.  

Results 

The study reports the progression in students’ understanding of the concept of rates of change 

and functions with respect to grade level and math courses. The Boxplot in Figure 2 presents the 

distribution of participant’s total scores. A cursory examination of the Boxplot shows that the 

middle fifty percent of the participants’ scores on the DTRC ranged from 3 to 9.  

 
Figure 2. A Boxplot Display of the Performance of all the Participants on DTRC. 

A total of six students scored 0, with only one student scoring 20. The two scores that were 

identified as outliers in Figure 2 are 19 (Geometry student) and 20 (AP-Calculus student). 
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Seventy-five percent of students (n=187) regardless of their grade level or current math course 

scored a 9 or less on DTRC with a mean score of 6.358 and a standard deviation of 4.133.  

The Parallel Boxplots in Figure 3 present a comparative distribution of the total scores of the 

participants’ performance on the DTRC by grade level. The information in the figure reveals a 

rise in scores from Grade 7 up to Grade 10. The presence of higher scores at higher grade levels 

may be due to increased exposure to the concepts by virtue of completion of more advanced 

math courses. However, Grade 10 and Grade 11 scores were similar. A high variability was seen 

in the score distribution of Grade 12. Students in the third quartile of Grade 12 distribution 

earned lower scores than the third quartile students in Grade 10 and Grade 11.  

 

Figure 3. Parallel Boxplots for Comparative Distribution of Total Scores by Grade Level. 

One-way ANOVA on Total Scores versus Grade Level, and Games-Howell Simultaneous 

Tests for Differences of Means showed that mean score for Grade 8, Grade 9, Grade 10, and 

Grade 11 were not statistically significantly different from one another. The mean score for 

Grade 7 were significantly lower than the mean scores of the other grade levels as expected. 

However, there was a significant difference between mean scores of Grade 8 and Grade 12 

possibly due to an outlier score in Grade 12. In conclusion, student performance on the DTRC 

varied little across grade levels. 

The parallel Boxplots in figure 4 show a comparative distribution of DTRC Total Scores by 

Math Course. The figure shows that participants in Math-7 have the lowest mean, median, and 

maximum score on DTRC as they were not introduced to various representations of rates of 

change thus far. PreAlgebra, and Math 8 groups show approximately equal mean scores, close 
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values for median, and for maximum scores. Students in Geometry and Precalculus groups have 

similar performance with 75% of students scoring 10.25 or less in Geometry, and same 

proportion of students scoring 9.5 or less in Precalculus. Though not expected, 75% of 

Precalculus students (Grades 11, 12) scored 9.5 or less which is almost the same as lower fifty-

percent of Algebra II (Grades 10, 11) group.  

 
Figure 4. Parallel Box Plots of Total Scores by Math Courses. 

Also, it was expected that AP-Calculus group would outperform student groups from the 

other math courses. Only one AP Calculus student scored a 20. Three-fourths of the AP-Calculus 

participants scored 14.25 or less, as did the same proportion of students in Algebra II. DTRC 

participants enrolled in College Algebra, and AP-Statistics scored higher than the participants 

from the other math courses in the middle fifty-percent.  

Based on One-way ANOVA of Total Scores versus Course Code, mean scores for Algebra I, 

Geometry, Algebra II, Precalculus, and AP-Calculus were not statistically significantly different 

from one another. DTRC mean scores for each math course are much lower than expected score 

corresponding to that math course (Table 2). Students’ understandings do not appear to 

consistently build in a manner that could lead students to develop a solid mathematical structure 

of functions at the end of Precalculus. 

Scholarly Significance of the Study 

The focus of the study was to identify similarities and differences of grade seven through 

grade twelve students’ understanding of rates of change and functions while keeping in mind that 
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the participants from the higher grades will have more mature mathematical thinking in 

comparison to the participants from lower grades. This study found that students’ performance 

on the DTRC test did not show a similar progression in the internalization of the concepts of 

rates of change, and in formulating mathematical structure of functions as prescribed in the state 

curriculum standards. An implication of this study is for teachers to carefully select mathematical 

tasks that allow students to explore amounts of change and relationship between covarying 

quantities in the dynamic real-world contexts. This instructional intervention will provide the 

necessary experience for students to develop covariational reasoning, and to have a better 

understanding of functions in general. 
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Students often encounter situations where they make choices requiring a thorough understanding 
of mathematics and statistics. In order for these students to make informed decisions, they must 
be statistically literate. Teachers try numerous strategies, including the incorporation of 
different technology into the classroom, to help their students become mathematical and 
statistical thinkers. One particular technology, Tinkerplots, a dynamic statistical software 
program, has been used in a variety of settings to enhance the mathematics classroom. The 
purpose of this study was to determine whether the use of Tinkerplots in a statistics classroom 
affects students’ understanding of graphical displays of data. 
 

Purpose of the Study 
Students are frequently exposed to real-world situations in which they are required to make 

decisions where a deep understanding of statistics is needed. In order to be adequately prepared 

to make informed decisions, students need to be able to think and reason mathematically about 

statistics. Statistical literacy, which can be defined in a multiplicity of ways, but is best defined 

by Gal (2002), is an important part of the educational process of students. Gal’s (2002) definition 

of statistical literacy includes students’ ability to interpret and critically evaluate statistical 

information and their ability to discuss or communicate reactions to such statistical information, 

such as the understanding of what the information means. So according to Gal’s definition, for a 

student to be considered statistically literate, he or she must be able to understand and interpret 

graphical displays of data. Tinkerplots is a dynamic computer software program, developed in 

2005 by Cliff Konold and Craig Miller, which was designed for the purpose of helping students 

understand and interpret statistical data. The purpose of this study is to determine if Tinkerplots 

can significantly affect student understanding and interpretation of graphical data displays. 

Statistical Literacy 

The importance of statistical literacy, particularly numerical data and their representations, 

pervades society in an array of ways--news, politics, finance, medicine, etc. Steen (1999) 

suggests that "[t]he age of information is an age of numbers"(p. 8). However, studies show that 

students in the United States finish high school without adequate numerical and statistical 

reasoning. Businesses lack employees having quantitative or technical skills while colleges and 
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universities must offer a wide variety of developmental courses to offset numerical deficiencies 

of incoming students. "Despite years of study and experience in an environment drenched in 

data, many educated adults remain innumerate" (Steen, 1999, p. 9). In Adding It Up: Helping 

Children Learn Mathematics (Kilpatrick, Swafford, & Findell, 2001), it is reported that research 

evidence is both consistent and compelling in showing that students in the United States are 

weak in mathematical performance. Assessments indicate that U.S. students can adequately 

perform straightforward arithmetical procedures, but demonstrate only a limited understanding 

of mathematical concepts. Furthermore, students cannot apply mathematical skills to solve 

simple problems.  

As it becomes clearer that students are numerically and statistically deficient, our society is 

increasingly dependent on citizens and workers with quantitative and numerical skills. Mullis, 

et.al. (2004) claimed, according to the TIMSS 2003 International Mathematics Report, that 

although some students were performing better in mathematics and statistics, the United States 

still ranks well below the leading countries. In addition, particular sectors of the general 

population are underrepresented by individuals who are successful in mathematics and statistics. 

Some people cannot participate fully in our society because they lack a basic understanding of 

mathematics.  

Changes in most professional and educational fields require numerical and statistical literacy 

as necessary ingredient in all domains more than ever before (Lakoma, 2007). Steen (1990) 

makes the case that although numeracy (mathematical literacy) is to mathematics as literacy is to 

language, both literacy and numeracy are in decline in the United States. Even as it becomes 

more imperative that students have quantitative skills, the workforce is less mathematically or 

statistically literate. If individuals are not numerically literate and not able to think critically 

about data, then they are unable to participate in any discussion about what numbers mean 

(Whitin & Whitin, 2008).  
Tinkerplots 

Tinkerplots was developed with the goal of enhancing statistics education by enabling 

students to interact with data in a dynamic and fluid computer environment. Numerous research 

has been conducted on the effectiveness of Tinkerplots in a variety of settings with promising 

results. According to Lee and Hollebrands (2008), programs like Tinkerplots were created with 

the intent of giving users the ability to have dynamic control over data. This enables users to 
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reorganize data to gain a different perspective and amplify the abilities of users to solve 

problems. When discussing the different strategies students employ when interacting with 

Tinkerplots, Fitzallen (2013) identifies three different strategies—Snatch and Grab, Proceed and 

Falter, and Explore and Complete. Fitzallen notes that students using “the Explore and Complete 

strategy make strong connections between the graphical representations and the meaning they 

embody” (p. 13). She further states that Tinkerplots is most suited to students using this strategy. 

In a study on the use of Tinkerplots as a tool to understand the relationship between data, 

Monteiro, Asseker, Carvalho, & Campos (2010) identify the way in which participant 

interpretation of data changed from a local to a global approach when the “participants engaged 

in the process of transform(ing) the representations using Tinkerplots” (p. 5). Watson and Wright 

(2008) report that Tinkerplots enhances the learning environment by saving time and adding 

“creativity and student ownership to the production of evidence and the creation of a final report 

answering the initial questions” (p.40).  

In Resampling with Tinkerplots (2012), Watson describes how students are able to 

manipulate sets of data and gain intuition regarding claims made about the data without using 

formal hypothesis testing methods. “Students are able to gain intuition about what is required to 

accept or reject a claim made for a difference in two populations long before they meet formal t-

tests at a university or senior secondary level. The concrete visual approach of Tinkerplots can 

provide the hands-on experience students need to develop such intuition” (p.36). Hall (2008) 

echoes this sentiment when stating that participants found the program intuitive, user-friendly, 

and a complement to learning. A similar experience is described by Fitzallen & Watson (2010) 

when they discovered that students were able to become independent users of Tinkerplots and 

shifted from using the program in a simple, procedural manner into using it in a creative, 

discriminating way. Students exhibited that they could transform simple data analysis skills into 

reasoning about representations of data. “In doing so, they created plots that made sense to them 

and used the plots effectively to support their thinking about the data” (p. 5). 

Methods 
The purpose of this study was to determine if the use of Tinkerplots in a college statistics 

classroom has a significant effect on the students’ level of understanding of graphical 

representations of data. Pre-post treatment quantitative data were collected and analyzed to 

determine students’ level of understanding of data displays. The instrument used to collect the 
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data, the Statistics Assessment, was checked for both internal reliability and face validity. The 

Cronbach’s alpha reliability coefficient for the participant Statistics Assessment scores was 

0.769. According to George and Mallery (2003), this reflects an acceptable internal reliability. 

Items on the Statistics Assessment focused on students’ ability to understand and interpret 

graphical displays of data. Examples of Assessment items are shown in Figures 1 and 2. 

Participants in the study were selected from the general population of statistics students at a 

Midwestern regional university. Participants were enrolled in one of two sections of a Statistical 

Methods course, with one section being randomly selected as the control group and the other 

being selected as the experimental group. A convenience sample of 42 students participated in 

the study—19 in the control group and 23 in the experimental group. Both sections of the course 

were taught by the same instructor, in the same computer lab, on the same days of the week, and 

meeting for the same amount of time. The curriculum and pedagogy in both sections were the 

same, with the only difference being that participants in the experimental group were involved in 

completing Tinkerplots activities rather than completing supplemental in-class problems. 

Participants in the experimental group completed learning activities by working in groups during 

class time at computer stations and using Tinkerplots. The learning activities consisted of 

problem sets designed to assess students’ understanding of data displays. The experimental time-

frame was four weeks. 

Participants in the experimental group completed Tinkerplots activities that were chosen 

specifically because of how they reflected understanding and interpretation of data displays. 

Participants in the control group completed supplemental activities that were part of the original 

course curriculum. The experimental group was given an orientation to the Tinkerplots program 

during the first class period in the computer lab prior to the first activity. At the conclusion of the 

orientation, participants in the experimental group were able to complete the activities using 

Tinkerplots for the entire experimental time frame. 
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  Figure 1: Statistical Assessment Example Item #1 

Each subject in the study (N = 42) completed the Statistics Assessment during the first class 

meeting at the beginning of the experimental time frame. The investigator distributed and 

collected the Statistical Assessment instruments. Participants spent four weeks completing the 

Tinkerplots module in the statistics course. After completion of the module, subjects in both 

sections were again given the Statistical Assessment, which was distributed and collected again 

by the same investigator.  

Results 

The number of participants in each group (N < 30) necessitated the use of an independent 

samples Mann-Whitney U test for analysis. Using this test on the pre-treatment Statistical 

Assessment scores determined there was no significant difference between the experimental 

group and control group at the beginning of the experimental time frame. Results of the Mann-

Whitney U test indicated there was no significant difference found between the two groups, U = 

157.5, p > 0.05, with the sum of ranks equal to 433.5 for the experimental group and 469.5 for 

the control group.  

After the Tinkerplots module, an independent samples Mann-Whitney U test was conducted 

on the post-treatment Statistical Assessment scores at the α = 0.05 level to determine if there was  
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  Figure 2: Statistical Assessment Example Item #2 

a significant difference between the experimental and control groups. Analysis revealed no 

significant difference found between the two groups, U = 218.0, p > 0.05, with the sum of ranks 

equal to 495 for the experimental group and 408 for the control group.  

Table 1 

Descriptive and Inferential Statistics of Pre-Post Statistical Assessment Scores 

Group Range Mean Rank Sum U p 

Pre-Treatment Scores  

Control 16 36.53 469.5 157.5 0.121 

Experimental 08 34.17 433.5   

Post- Treatment Scores  

Control 15 38.32 408.0 218.0 0.990 

Experimental 19 38.65 495.0   

Note. N = 19 for the control group; N = 23 for the experimental group 

The results of the assessments analysis are presented in Table 1. It should be noted that, although 

the difference on post-treatment Assessment scores was not significant, the experimental group 

scored higher, on average, than the control group. In addition, the net difference between average 

assessment scores went from a -2.36 to a + 0.33 from the experimental group perspective. 
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Discussion 

Data analysis indicates that the influence of Tinkerplots on students’ understanding of 

graphical representations is minimal. According to the analysis of the quantitative data from the 

Statistical Assessments, there was no significant difference found between the control group and 

the experimental group which suggests that Tinkerplots did not significantly affect the ability of 

students to understand or interpret data displays. This is somewhat unexpected when compared 

to results reported by Fitzallen (2013), Watson & Wright (2008), and others. However, when one 

considers the mean scores on the Assessments from both groups and the change in those scores 

from pre to post-treatment, it is hard to ignore that the experimental group went from 

underperforming the control group to outperforming them, albeit slightly. This could indicate 

that Tinkerplots has a greater influence on students who struggle with interpreting data displays, 

and helps them understand graphs as well as students who do not struggle. However, this is not a 

claim, simply an idea for further research. Finally, participants in this study only used 

Tinkerplots for four weeks. It would be beneficial to investigate if a longer Tinkerplots module, 

say a semester, would vary the results. A prolonged experience with Tinkerplots would alleviate 

stress or trepidation when the program is introduced. In any case, it would be worthwhile to 

increase the body of research on the overall effectiveness of Tinkerplots. 
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Continuity is a central yet subtle concept in Calculus I. Yet very few students seem to grasp the 
nature of continuity. The purpose of this study was to investigate participant displayed depth of 
understanding of function, limit, and continuity in terms of the constructs described by 
Dubinsky’s (1991) Action-Process-Object-Schema theory. This paper reports on interview 
results of two participants. A prominent finding was that the participant who was more 
successful at solving problems concerning continuity displayed an Inter-level of development of 
schema of function and limit and the participant who less successful demonstrated that he was at 
the Intra-levels. 
 

Apostol (1967) describes continuity as “one of the most important and also one of the most 

fascinating ideas in all of mathematics” (p. 126). Many of the theorems presented in calculus 

begin with the hypothesis of continuity. Yet many textbooks contain only one section that 

explicitly addresses the concept of continuity (Hass, Weir, & Thomas, 2008; Stein, 1987; 

Stewart, 2014). This treatment of continuity may lead students to believe that continuity is not 

important. Furthermore, since the notion of limit is embedded within the definition of continuity, 

student comprehension of limit strongly influences their understanding of continuity.  

Many textbook authors discuss continuity in terms of the graphical representation of 

function. Intuitively a function is said to be continuous if one can sketch its graph without lifting 

one’s pencil (Hass et al., 2008; Stein, 1987; Stewart, 2014; Taalman & Kohn, 2014). Tall (1991) 

claims that describing continuity in these informal terms is misleading. Furthemore, Tall (1991) 

argues that this intuitive explanation lays the groundwork for connectedness and not continuity. 

Millspaugh (2006) argues that presenting continuity in this way confuses students concerning the 

role of limit.  

Theoretical Framework 

Action Process Object Schema (APOS) theory is an extension of Piaget's reflective 

abstraction developed as a framework for describing student learning of advanced mathematical 

topics like calculus (Dubinsky, 1991). The theory is based on the premise that an individual 

attempts to solve mathematical problems by mentally constructing actions, processes, and 

objects, and then organizing them into schemas (Arnon, et al., 2014; Asiala et al., 1996; 
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Breidenbach Dubinsky, Hawks, & Nichols., 1992; Cottrill et al., 1996, Dubinsky, 1991; 

Dubinsky, & McDonald, 2001). APOS theory provides researchers with tools to describe 

demonstrated levels of student understanding. The purpose of this study is to use the constructs 

of APOS Theory to investigate demonstrated levels of student understanding of continuity, and 

their relationship between demonstrated levels of student comprehension of function and limit.  

An action is a step-by-step procedure that transforms an object. The cues to perform these 

steps are viewed primarily external to the student. If one demonstrates a view of function limited 

to action, one will be able to fill out a function table, but one will view each calculation of range 

values in isolation from the rest (Briedenbach et al., 1992). An individual restricted to an action 

conception of limit will evaluate f only at a or at a few values near a when computing )(lim xf
ax®

(Cottrill et al., 1996). 

A process results from an individual repeatedly performing an action, reflecting on that 

action, and then interiorizing that action. An individual no longer needs external stimuli to 

perform the same action. Furthermore, an individual demonstrates a process level of 

understanding by describing, reversing or composing that action without explicitly carrying out 

the steps. A student that appears to be able to view a function as a process will notice that each 

range value of the function is obtained by applying the same computations to its corresponding 

domain value (Breidenbach et al.,1992). According to Cottrill et al. (1996), one displays a 

process view of limit by coordinating the domain and range processes in order to calculate 

)(lim xf
ax®

. The domain process results from interiorizing the action of taking domain values that 

successively approach a. The range process involves evaluating f at the points from the first 

process and noticing if they appear to be close to a certain number L when the domain values are 

sufficiently close to a (Cottrill et al., 1996). So a process conception of limit depends on a 

process view of function. 

An object results from an individual reflecting on a procedure applied to a particular process 

and becoming conscious of that process as a totality. One displays an object view of function by 

showing a facility when working with transformations of functions (Arnon et al., 2014). An 

individual will show an object view of limit by being able to find limits of combinations of 

functions (Cottrill et al., 1996). 
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An individual’s schema of a particular mathematical concept consists of actions, processes, 

objects, and other schemas linked in a coherent manner. It is a framework from which an 

individual solves problems that pertain to that concept (Asiala et al., 1997) and develops in three 

stages: Intra-, Inter-, and Trans- (Baker, Cooley, & Trigueros, 2000; Clark et al., 1997; Cooley, 

Trigueros, & Baker, 2007; Dubinsky & McDonald, 2001).  

The Intra- stage is characterized by a focus on individual cognitive constructs in isolation 

from all others. One who appears to show an Intra-function stage of progress will tend to focus 

on one representation of function within a specific context and the actions that one can do with 

that (Dubinsky & McDonald, 2001). While Cottrill et al. (1996) do not address the stages of the 

limit schema as a triad, I put forth that since a process conception of limit requires a coordination 

of processes, one who is at the Intra-limit stage of development will be restricted to an action 

view of limit. 

The Inter- stage is marked by the ability to coordinate relationships between the Processes 

and Objects of which the schema is composed and is referred to as a pre-schema stage of 

development (Arnon, 2014; Clark et al., 1997). In particular, one who demonstrates an Inter-

function stage of growth will be able to successfully coordinate the algebraic and graphical 

representations of the same function. Furthermore, such an individual will demonstrate an ability 

to understand that the different operations used to combine two functions are examples of the 

same action, namely transformation of functions (McDonald & Dubinsky, 2001). So one at this 

stage will be able to think of a function as an object. An individual who appears to have reached 

the Inter-limit stage of progress will be able to think of a limit as a coordination of processes as 

described above and a finite object; it is not necessary to have an object conception of limit. In 

addition an individual will be able to calculate the limit correctly for the same function given in 

algebraic and graphical form. 

One is said to have reached the Trans- stage when one’s cognitive structures are connected in 

a coherent manner (Baker, Cooley, & Trigueros, 2000; Clark et al., 1997; Cooley, Trigueros, & 

Baker, 2007; Dubinsky & McDonald, 2001). At the Trans-function stage, an individual will 

recognize that all functions have a domain and range and an operation or series of operations that 

that transform each domain element into a range element (Arnon et al., 2014; Dubinsky & 

McDonald, 2001). At the Trans-limit stage one will show the understanding that Lxf
ax

=
®

)(lim  if 

and only if for any value x arbitrarily close to a, )(xf  is sufficiently close to L. One at the Trans-
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limit stage will be able to coordinate the above description with an object conception of function 

to find the limit of any combination of functions. 

Even though the above discussion makes it appear as though the constructs of APOS Theory 

are developed in a hierarchical fashion, the reality is more complicated than that. Consider the 

mathematical concept of function. Initially an individual is exposed to certain kinds of functions. 

Later the individual may develop a process conception of function with regards to those types of 

functions, but the individual will think of a more sophisticated function as an action when first 

working with it. So one may demonstrate a different conception of function when working with 

various functions depending upon one’s experience with each function (Arnon et al., 2014; 

Dubinsky & McDonald, 2001). 

When comparing two participants who up to a certain point may be successful but with more 

sophisticated problems one may show more success than the other, the theory is useful in 

describing the mental constructs that the more successful student has made that the less 

successful student has not (Arnon et al., 2014; Dubinsky & McDonald, 2001). 

Method 
Participants for this study were drawn from two Calculus I classes at a mid-sized university 

in the Midwest. To control for differences in instruction, I developed a curriculum for teaching 

continuity for both instructors to use. The curriculum was traditional and did not use 

connectedness of a graph to introduce continuity. I attended their classes to confirm that each of 

them was teaching from my curriculum. I distributed written instruments: one each for function, 

limit, and continuity to the students in each of these classes. Eight interviewees were chosen 

based on their written responses and instructor input so that the sample contained participants of 

varying levels of ability. The interview tasks consisted of problems to solve pertaining to 

function, limit, and continuity. Each participant was interviewed once for a period of about 50 

minutes. Interviews were video-taped and then transcribed. The results of the interviews were 

used to answer the following research questions. 

1. What are the ways that participants think about continuity? 

2. What is the relationship between demonstration of Intra-, Inter-, and Trans- levels of 

development of participant function schema and how well participants solve non-routine 

problems concerning continuity? 
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3. What is the relationship between demonstration of Intra-, Inter-, and Trans- levels of 

development of participant limit schema and how well participants solve non-routine 

problems concerning continuity? 

Working Definitions 
For the purposes of this study, the following definition of continuity at a point will be used: 

Let a function f be a defined on an open interval containing the real number a. Then f is 

continuous at a if ).()(lim afxf
ax

=
®

 It is also necessary to clarify the nature of the questions 

employed. A non-routine problem is one that is not assigned for homework and does not appear 

on any exam (Selden et al., 1999). 

Findings 

Even though eight students were interviewed, this paper reports sample responses of two 

participants, Harold and Steven. Of the eight students interviewed, Harold worked the most 

problems successfully. The sample of responses reported shows that Harold demonstrated he was 

at the Inter-function stage on the items with functions with which he had more familiarity. 

Steven demonstrated he was at the Intra-function stage.  

In the following instances, Harold successfully determined that the function is not continuous 

on its domain. The first instance regards the function 
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and the second is the graphical form of the same function. He answered the question regarding 

the algebraic form first without having seen the graphical form. In these instances Harold 

demonstrated an Inter-function stage: he was able to view a function from an object perspective 

and he successfully coordinated the graphical and algebraic forms of the function. In the excerpt 

below I had asked him to clarify how he reached his conclusion regarding the domain of the 

above function. (Note that initially he gave an incorrect response but then corrected himself.) 

Harold: Cause uh the limit from the right is not equal to the limit from the left. So there is a 

gap in between the … (He demonstrates with his hands). No the domain is actually from 

minus infinity to infinity. It is not continuous at negative one, because the value of the limit 

as x goes to minus one from the right is not equal to the limit as x goes to negative one from 

the left. 
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Later on using limits he explained why the graphical form of the same function was not 

continuous at 1-=x . When I asked him if there was a relationship between the two functions, 

he gave me the following response. 

Harold: …there is a shift uh shift to the left there is like a shift upward three … and it is 

negative so it will be an upside down parabola. This is the half of it. From x bigger than 

minus one and there is a shift up one. 

In this instance Harold demonstrated that he understood the relationship between the 

graphical and algebraic representation of the same function. He showed that he grasped that 

when the left hand and right hand limits are not equal but finite, then there is necessarily a gap in 

the graph at that point. He also displayed an object conception of function by recognizing each of 

the parts that make up the piecewise defined function as transformations of the function
2)( xxf = . Harold gave a similar response when I asked him about other functions that were 

familiar to him. In these instances, Harold was exhibiting he was at the Inter-function stage. 

In the above instance, Harold was able to calculate the necessary limits with ease. He also 

had no difficulty with realizing that these limits were finite values. In other instances, when 

calculating limits for functions with which he was familiar he gave me a similar explanation. So 

in these instances, he was showing that he was at the Inter-limit stage. 

Steven on the other hand, had difficulty doing the tasks I asked of him without graphing the 

functions on a graphing calculator. He had a preference for the graphical form of the function. 

He also reasoned inconsistently with the algebraic and graphical forms of the function as shown 

in the discussion below pertaining to the same function that was referred to above. When I asked 

Steven if the above function was continuous at negative one, he said yes, explaining that the 

function was defined at negative one. When I asked him if the function was continuous on its 

domain, he said yes because, “there’s no cusp, no crease, no open circle. There’s no value that’s 

not evaluated at any given x.”  

Steven did not know how to graph piecewise defined functions on his graphing calculator, 

but from his description, it appears that he was imagining what the graph looks like. I had given 

him paper to work out problems, but he did not sketch any graphs at this point in the interview. 

In the next portion of the interview, I handed him a card with the graphical form of the same 

function. 

I: Is that function continuous at x equals negative one? 
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Steven: No. 

I: Why not? 

Steven: There’s a gap between the two functions. 

I: Can you tell me what the limit is as x approaches negative one? 

Steven: One. 

I: And how did you reach that conclusion? 

Steven: Cause there’s um there’s a value of y evaluated at x. 

… 

I: Is that function continuous on its domain? 

Steven: No it’s not. 

I: And why is that? 

Steven: Cause there’s a gap between the two functions of the piecewise. 

After I asked him if there was a relationship between the two forms of the function, he 

recognized that they were different representations of the same function, but he was unable to 

give me an adequate explanation for why. The excerpts show, however, that he failed to 

recognize that he had been reasoning in an inconsistent manner. His preference for the graphical 

form of functions, his reasoning about continuity in terms of the graphical form, and his 

difficulty coordinating the algebraic and graphical forms of the function give evidence he was at 

the Intra-function stage. Furthermore, since he evaluated the limit by only evaluating the 

function at the point, he was showing that he was at the Intra-limit stage. 

Discussion and Conclusion 

It is important to note that the small number of interviewees limits the generalizability of this 

study. A prominent finding of this study is that when a participant solved a continuity problem 

correctly, he demonstrated Inter-function and Inter-limit stages of schema. Both of these stages 

require an object conception of function. Before one is able is to view a function as an object, 

one must be able to view a function as a process. If one is only able to do actions with functions, 

then one will have difficulty developing a sound understanding of limit and continuity.  

Since grasping both of these ideas is central to success in calculus, this study points to the 

need for students in courses prerequisite to calculus to be given opportunities to develop at least 

a process conception of function. Students need to be able to reason consistently with algebraic 

and graphical forms of functions. This requires that students not only be exposed to both, but 
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have the opportunity to see the relationship between the two forms and that they complement one 

another to give a deeper understanding of the function in question.  
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This study explores how entry-level undergraduate students engage in representing and 
connecting in the process of mathematical problem solving (MPS). Data comes from (a) Likert 
survey items from 254 College Algebra students and 405 Calculus I students and (b) individual, 
task-based interviews with 26 of these students at a large, urban university in the southwest 
United States. Students used representing/ connecting in MPS in three ways during interviews, 
but for the majority of solution paths, students showed no evidence of representing/ connecting. 
In addition, preliminary survey data indicates that students’ representing/ connecting does not 
increase by participating in College Algebra. 

The majority of undergraduates who intend to major in science, technology, engineering, or 

mathematics (STEM) do not complete a degree in a STEM field, and difficulty in mathematics is 

one contributing factor (President’s Council of Advisors on Science and Technology, 2012). 

Some research indicates that undergraduates may struggle with mathematical problem solving 

(MPS) in particular (e.g., Schoenfeld, 1992). MPS is fundamental to mathematics, yet there is 

limited research on how undergraduates engage in MPS (Schoenfeld, 2013).  

In the Mathematical Problem Solving Item Development Project, we aim to develop 

efficiently-scored survey items assessing undergraduate students’ MPS in five key domains, 

including representing and connecting. In this study, we explore the following: (a) How do 

undergraduates engage in representing/ connecting in MPS? (b) How do students’ survey scores 

in representing/ connecting change through participation in undergraduate mathematics courses? 

Theoretical Framework 

Lester (2013) asserted that “a problem is a task for which an individual does not know 

(immediately) what to do to get an answer” (p. 247). With this definition of problem in mind, we 

considered characterizations of what constitutes MPS. Campbell (2014) analyzed more than 20 

research articles in MPS and classified implied or explicitly-stated definitions of MPS, 

identifying five key characteristics: emphasis on sense-making, connecting mathematical ideas in 

various ways including via multiple representations, reviewing or reflection, justification, and 

underlying challenge. For example, Schoenfeld (1988) explicitly referred to sense-making and 
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taking apart a problem to seek understanding, and Kieran’s (2007) references to combining 

previously-learned techniques imply connecting prior knowledge to problem situations. Jonassen 

(1997) also highlighted connections, arguing “problem solving, as an activity, is more complex 

than the sum of its component parts” (p. 65), and Garofalo and Lester (1985) included 

monitoring and checking as important aspects of MPS. Researchers including Jonassen (1997) 

discussed that justifying or defending generated problem solutions promotes deep learning. 

Epperson, Rhoads, and Campbell (2016) refined definitions of Campbell’s domains of sense-

making, representing/connecting, reviewing, justifying, and challenge. Representing/connecting 

was defined as “Bridging the problem to another idea, related mathematical approaches, or 

representations. Reformulating the problem by using a different representation, or connecting the 

problem to seemingly disjoint prior knowledge.” (p. 2; see Epperson et al., 2016 for definitions). 

Methodology 
Participants 

Participants were 254 College Algebra students (108 Fall 2015 and 146 Spring 2016) and 

405 Calculus I students (Fall 2015) at a large, urban university in the southwest United States. 

Both courses are designed for students intending to major in STEM. College Algebra participants 

came from nine sections with five instructors in Fall 2015 and four sections with three instructors 

in Spring 2016. Calculus participants came from eleven sections with eight instructors. 

MPS Survey 

To assess the five domains of MPS, we created open-ended mathematics problems and 

associated Likert-style survey items and administered a pre- and posttest for the semester course. 

In a single test, each student solved five mathematics problems, which were designed to be 

appropriately challenging yet not require knowledge beyond secondary-school algebra. 

Participants were not exposed to the particular problems before the pretest. After solving, 

students completed five to seven Likert items for each problem (25 – 35 items total), and each 

item assessed one MPS domain (see Figure 1). Each item suggested two approaches (one high 

use of the domain and one low use of the domain), and students rated their approach.  

Interviews 

We conducted individual interviews with 19 College Algebra students (from seven 

instructors) and seven Calculus students (from five instructors) between the pre and posttests. In 

the one-hour video-recorded interviews, students were asked to explain their thinking behind 
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their written work and survey items for (a) at least three problems that were solved on the pretest 

and (b) one new problem and associated items.  

 
Figure 1. A representing/ connecting survey item for the Ken’s Garden problem.  

Data Analysis 

We scored survey responses 1 (low) – 6 (high) according to the student’s choice and 

recorded domain averages for each student. For interviews, MPS domains were used as a coding 

framework (e.g., Miles & Huberman, 1994). Each researcher independently coded 3-5 

interviews. We then compared and revised coding before analyzing the remaining interviews. 

For the domain of representing/ connecting, survey items and the coding scheme gave 

preference to visual representations (written or mental) and mathematical connections because 

we hypothesize these are non-traditional MPS approaches for entry-level undergraduates. As 

such, our interpretation does not capture all types of representing/ connecting.  

Results 
How Undergraduates Engage in Representing and Connecting 

Summary. Undergraduates used representing and connecting (R/C) in three main ways 

during MPS in interviews: (a) visualizing or sketching graphs, (b) drawing diagrams, and (c) 

making mathematical connections to other problems or ideas. Despite a few rich illustrations of 

R/C, students showed no evidence of R/C (written or verbal) for the majority of solution paths, 

and in approximately half of the instances of R/C, problem statements may have prompted the 

use of R/C. Below we present counts from interviews followed by description and examples.  

Table 1 shows the number of students who verbalized or explained a representation or 

connection during MPS. Table 2 indicates the number of students who discussed each type of 

R/C. Some problems referred specifically to graphs or alluded to geometric diagrams (e.g., a 

rectangular garden). In Table 3, the number of solution paths in which students discussed R/C is 

reported according to problem type. The total number of solution paths consists of all solutions 
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that students discussed during the interviews. 

Table 1 

Number of students discussing representing/ connecting in interviews 

 College Algebra Calculus Total 
Discussed representing/ connecting 12 5 17 
Did not verbalize representing/ connecting 7 2 9 
Total 19 7 26 

Table 2 

Number of students discussing each type of representing/ connecting in interviews 

 College Algebra 
(n=12) 

Calculus 
(n=5) 

Total 
(n=17) 

Visualizing/ sketching graphs 8 2  10 
Drawing diagram 8 4 12 
Connecting 2 1 3 

Table 3 

Number of solution paths in which students discussed representing/ connecting in interviews  

 Graph/ Diagram in 
problem statement 

Graph/ Diagram not in 
problem statement 

Total 

Visualizing/ sketching graphs  6 6  12 
Drawing diagram  9 8 17 
No graphs or diagrams discussed 10 73 83 
Total 25 87 112 

In some instances, a student had drawn a diagram or graph, but did not discuss it in the 

interview. Table 4 shows the number of solution paths in which there was any evidence of R/C, 

separated into verbal and written evidence. 

Table 4 

Number of solution paths in interviews with any evidence of graphs or diagrams  

 Graph/ Diagram in 
problem statement 

Graph/ Diagram not in 
problem statement 

Total 

Described visualizing/ sketching 
graphs  

6 6  12 

Described drawing diagram  9 8 17 
Graphs sketched, not described  0 1 1 
Diagrams sketched, not described 4 8 12 
No graphs or diagrams 6 64 70 
Total 25 87 112 

Description. Eight college algebra students and two calculus students described how they 
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visualized or sketched graphs as part of their problem-solving process in 12 total instances. In six 

of the 12 instances, the problem specifically referred to graphs (see Tables 2 & 3). For example, 

consider the Building Functions problem: 

The graph of the function g contains the points, (3,11), (-1,3), (5,15), (-4,-3), and (-7,-9). 
Which of a) 𝑓𝑓 𝑥𝑥 = 29,  b) 𝑓𝑓 𝑥𝑥 = 𝑥𝑥,,   c) 𝑓𝑓 𝑥𝑥 = 𝑥𝑥,   d)𝑓𝑓 𝑥𝑥 = 𝑥𝑥 can be used to build g 
by replacing 𝑓𝑓(𝑥𝑥) with 𝑎𝑎𝑓𝑓 𝑥𝑥  or 𝑎𝑎𝑓𝑓 𝑥𝑥 + 𝑘𝑘, where 𝑎𝑎 ≠ 0 and k > 0? Explain your reasoning. 

This problem refers to the graph of the function 𝑔𝑔, which may prompt students to use graphs 

in solving the problem (although visual approaches are not required for a valid solution). 

Participant 1 (P1) used mostly visual approaches to solve the Building Functions problem. P1 

plotted the points on a coordinate plane and then compared the visual pattern of the five points to 

mental images of the graphs of the functions a) – d). She explained: 

I had a rough visual of what the graph would be. … If you drew these [graphs of functions a) 
– d)] out, they would be very, very different shapes. … A parent graph is a base and is what 
you have to work with. There can be general changes, but it will not fundamentally change 
the base graph into something else. 

In six of the 12 instances in which students described graphs, the problem statement did not 

refer to graphs. For example, consider the Fun Golf problem, which does not refer to graphs: 

Fun Golf, a local mini-golf course, charges $5 per person to play one round of mini-golf. At 
this price, Fun Golf sells 120 rounds per week on average. After studying the relevant 
information, the manager says for each $1 increase in price, five fewer rounds will be 
purchased each week. To maximize revenue, how much should Fun Golf charge for one 
round? 

In solving Fun Golf, P2 first wrote an equation for the revenue in terms of the increase in ticket 

prices. Recognizing that the graph of this equation is a parabola, P2 solved the problem by 

reasoning about the parabola, saying, “To maximize revenue, we just need to find the vertex of 

the parabola.” After solving the problem correctly, he reflected on his approach: “Before even 

considering the function of revenue, I understood that we’re dealing with a parabola with a 

negative slope [likely referring to the leading coefficient of the equation]. And so, it’s very clear 

that your vertex is … your highest revenue.” 

Eight college algebra students and four calculus students discussed diagrams as part of their 

problem-solving process in 17 total instances (see Tables 2 & 3). In nine of the 17 instances, 

students were solving a problem that alludes to a rectangular garden, the Ken’s Garden problem:  

Ken’s existing garden is 17 feet long and 12 feet wide. He wants to reduce the length and 
increase the width by the same amount. If he wants his new garden to be approximately half 
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the size of the current garden, what dimensions are appropriate for Ken’s new garden? 

All students who used a diagram in solving Ken’s Garden drew a rectangle and used the 

rectangle to reason about the changes in length and width of the garden. In addition, there were 

eight instances in which students discussed diagrams when the problem statement did not allude 

to a diagram. For example, when P3 was solving the Fun Golf problem, she was thinking of the 

revenue as a product of ticket price and rounds purchased, so she drew a rectangle with the ticket 

price as the length, the rounds purchased as the width, and the revenue as the area. She then 

considered how the area of the rectangle could be maximized. 

In solving problems, two college algebra students and one calculus student made 

mathematical connections to other ideas with which they were familiar (see Table 2). For 

example, in the Air Travel problem, an airplane is flying from Boston to Los Angeles, and the 

plane’s distance from Los Angeles is given as a function of time the plane has been flying. In 

solving Air Travel, P4 described how the function was connected to the idea of displacement, 

which helped her to reason about the problem.  

Students described or sketched graphs and diagrams to solve problems for 42 solution paths, 

and 19 of these instances were in response to problems that referred to a graph or diagram. 

Further, there were 70 solutions paths for which there was no written or verbal evidence that 

students used graphs or diagrams to solve the problem. For the 87 problem statements that did 

not refer to graphs or diagrams, 64 corresponding solution paths had no evidence of graphs or 

diagrams. Notably, for the 25 problems that did refer to graphs or diagrams, there were 6 

solution paths for which students showed no evidence of graphs or diagrams (see Table 4). 

Interviews further indicated that some students used graphs and diagrams only in cases where 

they were having difficulty solving the problem using equations or formulas. Three students 

specifically described such an approach. For example, P3 explained why he drew a diagram to 

better understand the problem: “because this is something I didn’t have the practice to be able to 

do properly. And other [problems], it was easier for me to think, ‘Okay, this is what I need. … 

Put this in, put this in there, plug this in, plug this in.’” Similarly, P5 said if he was solving a 

problem where he wrote “some kind of a function or something and it still doesn’t feel right, I’ll 

try to draw a graph or something. But usually that’s forestalling the inevitable of settling on an 

answer I don’t like anyway.” That is, P5 seemed reluctant to draw a graph, and only claimed to 

do so when symbolic approaches were unsuccessful. 
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MPSI Items Measuring Representing/ Connecting 

Data from the larger sample came from the survey items measuring R/C.  

Table 5 

Average scores for Likert items assessing representing/ connecting 

 Pretest Posttest 
Fall 2015 College Algebra  3.4496 (n = 108) 3.1265 (n = 49) 
Spring 2016 College Algebra  3.4346 (n = 133) 3.4955 (n = 28) 
Fall 2015 Calculus  3.1816 (n = 405) 3.4919 (n = 165) 

Average scores for R/C are in Table 5. R/C was rated on a scale from 1 – 6, so a middle score 

would be 3.5. The data in Table 5 indicates that most groups averaged very close to the middle of 

the scale, suggesting that strong use of R/C (score 4-6) is balanced with weak use (score 1-3). 

The Fall 2015 data suggested that students may use R/C more at the beginning of College 

Algebra than the end, but data suggests the opposite may be true for students in Calculus (see 

also Campbell, 2016). This conjecture is supported by data from the 12 College Algebra students 

who completed both the pre- and posttests in Fall 2015. For these students, the overall average in 

R/C decreased 0.4858, the greatest decrease of any of the domains measured, and only two of the 

12 students had individual averages in R/C that increased from pre to posttest.  

Spring 2016 posttest results do not indicate a significant increase in R/C scores, although 

these results should be interpreted with caution due to low participation.  

Discussion 
Research literature indicates that representing and connecting are important aspects of MPS, 

and this study’s interviews offered some rich examples of how undergraduates can use graphs, 

diagrams, and mathematical connections in MPS. However, for the majority of solution paths in 

interviews, students showed no evidence of R/C, and some students indicated they were using 

graphs or diagrams reluctantly rather than as a preferred strategy in MPS. At the same time, 

quantitative data from surveys did not indicate that students’ R/C scores improved with their 

participation in College Algebra—a course in which several topics are suited for R/C. Why 

might students have limited engagement in R/C? We do not yet have data to answer this 

question, but we offer several points for consideration. We wonder if undergraduate mathematics 

curriculum and/ or instruction may be influencing students’ use of R/C. For example, what types 

of MPS experiences do students have in these courses, and how is MPS addressed? To begin to 

explore some of these questions, we are currently analyzing data on the College Algebra 
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curriculum at the participating university. We have also revised Likert items and are collecting 

additional survey and interview data to further supplement these preliminary findings.  
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The purpose of this study was to explore the hidden curriculum embedded in textbooks selected 
for tertiary mathematics modeling courses. These courses are typically populated by non-STEM 
majors who have experienced difficulty learning mathematics. The modeling course is often the 
last opportunity to affect change in how these students view the subject and their own 
capabilities. We investigated a randomly generated sample of textbooks adopted by a stratified 
sample of higher education institutions in one U.S. state. We found abstracted generalization of 
mathematics to be more important than contextual problem solving. This result is problematic 
for instructional reform efforts. 
 

Tertiary-level mathematics modeling courses focus on solving real world problems by 

modeling them mathematically. In traditional settings, the relevant mathematics is “taught” by an 

authoritative other and then applied to real world problems. In this setting, the goal is to teach 

mathematics so that it can be applied. Newer understandings about how students learn has led to 

a focus on using real world contexts as a vehicle for making sense of the mathematics. This 

approach allows students to appreciate the usefulness of mathematics, capitalizes on their lived 

experiences to facilitate connected mathematical understandings, and optimizes mathematical 

learning (National Council of Teachers of Mathematics [NCTM], 2014a).   

In our experience, the students enrolled in college-level mathematics modeling courses are 

typically non-STEM majors fulfilling the minimal number of mathematics courses for degree 

completion in higher education. Many of these students experienced difficulty learning 

mathematics in the K-12 school setting and their affinity for the subject has been severely 

diminished. We have noted that faculty, adjunct instructors, or graduate students may instruct 

mathematics modeling courses. Indeed, a single institution may have several types of instructors 

assigned to the multiple sections necessary to meet student demand.  

Instructors of mathematics modeling courses are faced with meeting the institutional 

expectations for such a course. A departmental syllabus may outline course objectives for the 

course but the textbook itself often conveys larger messages about what content should be 

learned and how it should be taught (Fan, Zhu, & Miao, 2013; Mesa & Griffiths, 2012). These 
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messages are implicitly conveyed to both instructor and students and can be said to represent a 

hidden curriculum (Giroux & Penna, 1979). 

Because the mathematics modeling course is often the first and last mathematics course for 

many college students, we argue it represents a final opportunity to affect change in how students 

view the subject of mathematics and their own capabilities. Therefore, it is important to question 

what implicit and explicit messages are portrayed by mathematics modeling textbooks. In order 

to explore the hidden curriculum in higher education mathematics textbooks, we sought to 

answer the following research question: What implicit messages about mathematics teaching and 

learning are conveyed by textbooks adopted for use by higher education mathematics 

departments for introductory mathematics modeling courses in one U. S. state? 

Literature Review 

Herbel-Eisenmann and Wagner (2007) offered a framework for analyzing mathematics 

textbooks’ positioning of students in relation to mathematics, their peers, their teacher, other 

people, and their own experiences. In doing so, they assigned agency to the text; that is, they 

treated inanimate textbooks as an entity capable of conveying both explicit and implicit 

messages to the reader. Furthermore, Dietiker (2013) argued that mathematics textbooks can be 

interpreted as narrative, where the text presents mathematics in a chronological order that is 

purposeful and influential.  

For this study, we similarly viewed text as agent capable of positioning students, but 

extended this assumption to a textbook’s ability to frame students in the eyes of instructors. In 

this way, the textbook similarly conveys explicit and implicit messages about what students 

should learn and how they can best learn it. We also acknowledged that the narrative order of 

presentation affects the reader’s experience, but extended this to an assumption that narrative 

order conveys messages about student capabilities, as well as how they learn. 

We wanted our examination of mathematics modeling textbooks to be evaluative as well as 

descriptive. This required us to identify a framework that defined effective teaching and learning, 

in addition to providing a structure for analyzing textbooks. In particular, we wanted to compare 

the textbook’s implicit messages about teaching and learning with accepted understandings of 

teaching and learning in the mathematics education community. We therefore decided to position 

our analysis around NCTM’s (2014a) eight elements of effective teaching and learning: 1) 

establish mathematical goals to focus learning; 2) implement tasks that promote reasoning and 
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problem solving; 3) use and connect mathematical representations; 4) facilitate meaningful 

mathematical discourse; 5) pose purposeful questions; 6) build procedural fluency from 

conceptual understanding; 7) support productive struggle in learning mathematics; and 8) elicit 

and use evidence of student thinking. Other literature, as described in our subsequent sections, in 

combination with NCTM’s descriptions of the components of effective teaching and learning 

formed the theoretical groundwork for our study and subsequent analysis. In the next section, we 

describe more specifically our methods and analysis. 

Methods 

Our goal was to conduct analyses on a representative sample of textbooks currently in use at 

a variety of institutions. To achieve this goal, we organized higher education institutions into 

stratified Carnegie classifications and randomly selected one institution from each classification 

within a single U.S. state. For each institution in our sample, we identified the mathematics 

course that most closely matched a typical mathematics modeling course. These courses focused 

on using mathematics to model real world problems. We identified the textbooks that were 

required by the instructors who taught these courses. One textbook was exclusively used by two 

separate institutions. The instructors of a third institution differed on their required textbook, 

with most instructors requiring one textbook and a couple of instructors requiring another. We 

included both textbooks in our evaluation. We therefore had four textbooks comprising our 

sample, hereon referred to as textbooks A, B, C and D. We have chosen not to reveal the titles 

and authors of these textbooks because our goal was to synthesize results to describe current 

national trends rather than to highlight the strengths and weaknesses of particular textbooks.  

Collectively, we dissected 708 examples and exercises spanning nine sections contained 

within 145 pages between the four textbooks. For triangulation purposes, we selected linear 

modeling (and/or functions) primarily because each text contained material on this topic and 

unlike other topics we view linear growth as common to mathematical modeling. We each 

reviewed three textbooks, employing comparative analysis to verify findings. Our results are 

provided in the order of NCTM’s (2014a) eight elements of effective teaching and learning.  

Findings 

To what extent do texts establish mathematical goals to focus learning? NCTM (2014a) 

described the establishment of goals as crucial to an ability to meet other elements of effective 

teaching and learning. Beyond simply stating goals and objectives, NCTM asserted:  
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Both teachers and students need to be able to answer crucial questions: 1) what 
mathematics is being learned? 2) why is it important? 3) how does it relate to what has 
already been learned? 4) where are these mathematical ideas going? (p. 13) 
 

Without exception, the textbooks stated objectives at the beginning of the chapter or section and 

demonstrated importance though italicizing, bolding, highlighting and boxing content. These 

emphases convey that the important mathematics includes solving linear equations and 

mathematical vocabulary and properties. Only textbook B addressed the importance of the 

mathematics by arguing that comprehension of linear growth is a useful skill for understanding 

our world. In comparison, textbook C offered that learning mathematics could potentially be of 

value in other subjects, or, barring that, serves as “brain exercise.” None of the textbooks 

authentically related linear functions to previous material within the text, other than a few 

cursory references to a previous example or subsequent chapter. We noticed the how, why and 

where questions from above were primarily left to the instructor and the students to answer.  

To what extent do texts promote reasoning and problem solving? Smith and Stein (1998) 

developed a framework for classifying mathematical tasks by focusing on the task’s cognitive 

demand. Tasks requiring memorization or procedures without connections are lower level 

demands, while those involving procedures with connections or requiring processes described as 

doing mathematics are high level. Of the 708 examples and exercises, textbooks A, B, C and D 

contain 46%, 85%, 93%, and 85% of lower cognitive demand tasks respectively. High level 

demand tasks are associated with active inquiry and the formation of connections that lead to 

better mathematical learning. However, textbooks A, B, C and D encompassed only a marginal 

54%, 15%, 7%, and 15% of high cognitive demand tasks respectively. These tasks were often 

identified within exercise sections labeled as critical thinking and writing about mathematics. 

With the exception of textbook A, the hidden message is that teachers and students should be 

spending a larger portion of their efforts working on lower cognitive demands tasks.  

To what extent do texts use and connect mathematical representations? NCTM (2014a) 

describes five types of representation: visual, physical, symbolic, contextual, and verbal. Flexible 

and adaptive thinking between representations magnifies mathematical structure and enhances 

problem solving; therefore, the connections made among the representational forms is equally 

important.  
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In our analysis, the primary source of evidence was the examples and solutions given at the 

beginning of each section and our secondary source was the nature of the representations either 

requested or given within the end-of-section exercises. Textbook A almost always used multiple 

representations and frequently made connections between them. Additionally, nearly every 

example and exercise was contextualized and it frequently connected symbolic and visual 

representations. In contrast, textbooks B and C heavily emphasized symbolic representation and 

rarely made explicit connections. Out of fourteen examples in textbook B, only six were in 

context. It situated contextualized problems toward the end of all exercises. In textbook C, only 

three of seventeen examples were in context and these were in the last of three sections devoted 

to linear growth. Textbook D used mostly symbolic representations; of 25 examples, 10 were in 

context. Textbook D was unique in that it had a single section devoted to graphic or visual 

representation. In this section, strong explicit connections were made between symbolic, visual 

and contextual information. Textbook A and D demonstrated that explicit connections are 

possible but not necessarily commonplace. None of the textbooks mentions using physical 

models. We found it ironic that a course described as modeling contained so few contextualized 

problems in many textbooks.  

To what extent do the textbooks facilitate meaningful mathematical discourse? Because 

textbook communication is strictly one-way, mathematical discourse in this arena is dependent 

on the reader’s ability to comprehend what he or she is reading. The Flesch Reading Ease 

statistic quantifies readability by measuring number of syllables per word, sentence length, and 

other factors (Flesch, 1948). The statistic ranges from 0-100, with higher numbers correlating to 

easier readability. Similarly, the Flesch-Kincaid Grade Level purports to measure the grade level 

equivalence of selected text (Kincaid, Fishburne, Rogers, & Chissom, 1975).  

Each textbook offered an introductory overview of the topic of linear growth, usually in the 

form of a real world problem that could be modeled by a linear function. We measured the 

readability of each of these introductory passages and obtained Flesch Reading Ease statistics of 

40.2, 35.8, 49.7, and 68.3 for textbooks A, B, C and D respectively. The associated Flesch-

Kincaid Grade Level scores were 12.8, 13.0, 11.7 and 7.9 respectively. Wilkins, Hartman, 

Howland, and Sharma (2010) found that roughly half of one university’s college entrants lacked 

the literacy skills expected of incoming freshmen. The reading level of most of the textbooks in 

our sample may exceed the comprehension skills of a significant number of students.  
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To what extent do the textbooks pose purposeful questioning? We identified the questions 

contained in the relevant sections of each textbook and classified each as either open or closed. 

In all four textbooks, questions tended to be closed; that is, a single, correct answer was 

expected. An exception was that both textbooks C and D employed a Writing in Mathematics 

section in the exercises where open questions offered flexibility in how questions could be 

correctly answered. Additionally, textbook D included a Critical Thinking section in the 

exercises that also contained some open questions. 

Imperatives often stand in for questions in mathematics textbooks. Herbel-Eisenmann (2007) 

noted it is important to evaluate imperatives (e.g. directives such as to create a graph or consider 

a pattern) when evaluating a textbook “because they implicitly address the reader and involve 

him or her in the construction of mathematics” (p. 349). She classified imperatives as inclusive 

or exclusive, as a way to describe how the reader is positioned with respect to the mathematical 

community. Inclusive imperatives include the reader by directing him or her to, for example, 

think, consider, or predict. In contrast, exclusive imperatives metaphorically position the reader 

as a “scribbler” (Rotman, 1988) by instructing him or her to, for example, write, make, or find. 

We found that most imperatives contained in the textbooks were exclusive and that inclusive 

imperatives were rarely, if ever, used. Interestingly, the exceptions again were the Writing in 

Mathematics and Critical Thinking sections of textbooks C and D, which contained more 

inclusive imperatives than what was found in other parts of the text.  

To what extent does the textbook build procedural fluency from conceptual understanding? 

According to NCTM (2014b), “Procedural fluency builds from an initial exploration and 

discussion of number concepts to using informal reasoning strategies and the properties of 

operations to develop general methods for solving problems” (“NCTM Position,” para. 1). 

However, without exception, abstracted mathematics preceded its application in the form of 

word problems. Varying levels of formality characterized these presentations in the form of 

precise language and definitions, and the privileging efficient procedures. Additionally, all four 

textbooks implicitly employed conventional mathematical norms (e.g. the variable belongs on 

the left hand side of the equation; answers should always be written in simplified form, etc.). 

Initial explorations and informal reasoning strategies were nonexistent in these textbook formats. 

As textbooks inform the instructor about what to teach (Fan et al., 2013), building procedural 

fluency from conceptual understanding is left unaddressed.  
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To what extent does the textbook support productive struggle in learning mathematics? The 

phrase “productive struggle” suggests an environment in which the answer is not immediate and 

in which forethoughts are components of the learning process. We evaluated the extent to which 

the textbooks supported or suggested such learning environments. We believed that simple, 

straightforward procedures serve to reduce mathematical struggle, whereas general heuristics 

offer support without dictating the strategy. With heuristics, students must rely on their own 

sense making and reasoning skills, which are important components of productive struggle.  

Textbooks A and D emphasized heuristics over procedures, although textbook D prescribed 

procedures at times. Occasionally, textbook D acknowledged alternate pathways to solving 

equations. In contrast, textbooks B and C predominately prescribed procedures and dictated 

single solution methods.  

 To what extent does the textbook elicit and use evidence of student thinking? None of the 

textbooks in our sample offered insight to how students commonly approach the relevant 

mathematical ideas or the misconceptions they may hold. However, three of the four textbooks in 

our study were student editions. It is possible that instructor editions may offer more depth and 

guidance for instructors, but the one instructor edition we evaluated did not support this 

supposition. If the instructor is meant to use student thinking to scaffold mathematics learning, 

these textbooks do not offer such support. 

Discussion 

As evident in our findings, these textbooks offered few strategic directions for teaching and 

learning mathematics in ways suggested by NCTM (2014a; 2014b). Indeed, with a few 

exceptions, the reviewed textbooks provided minimal support for NCTM’s elements of effective 

teaching and learning. All the textbooks portrayed an abstracted, purified form of mathematics 

which could only be used to solve problems after proficiency was achieved. This approach 

perpetuates the idea that mathematics is best learned through a progression of algorithmic 

procedures that gradually increase in cognitive demand and difficulty.  

The textbooks implied that students are meant to understand the world through mathematics 

as opposed to the other way around. Thus, students are positioned as dependent on the instructor 

for access to mathematics, and ultimately, to problem solving. The lack of support for multiple 

pathways and entry points for tasks, and lack of support of discussion and connected 

representations, convey the message that these elements are unimportant to student learning. 
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Mesa and Griffiths (2012) suggested that instructors perceive textbooks as a resource for 

students. As a potential catalyst for a fresh perspective on mathematics, these textbooks 

unfortunately transmit traditional views of mathematics to non-STEM students. Fan et al. (2013) 

noted the role textbooks play in informing instructors what and how to teach. Therefore, 

instructional reform at the tertiary level should consider textbooks as valuable tools for both 

instructor and students. Can textbooks mediate curriculum design for instructor and mediate 

mathematical perceptions for both parties? We suspect the mathematics used in situated 

contextual learning may be a more productive outlook for the population of students being 

served and that further research in this area is imperative to affect change. 
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