3-D: The Foundation for Developing Geometric Thinking

Dr. Jackie Sack RUSMP
Spring Networking Conference February 24, 2007

Does it make sense to begin with 2-D figures?

- Rectilinearity or straightness?
- Flatness?
- Parallelism?
- Right angles?
- Symmetry?
- Circles?
- Similarity?

What skills are needed?

- Turn, shrink and deform 2-D and 3-D objects.
- Analyze and draw perspective views, count component parts and describe attributes that may not be visible but can be inferred.
- Physically and mentally change the position, orientation, and size of objects in systematic ways as understandings about congruence, similarity and transformations develop.
(NCTM, 2000)
-• \mid TEKS
Later...

- ○
 3-D Models

-
 Conventional-Graphic Models

Conventional-Graphic Models: Functional Diagrams

Conventional-Graphic Models: Assembly Diagrams

(c) model Tung Ken Lam
(C) diagrams D.Petty

. \quad Conventional-Graphic Models: Structural Diagrams

- $\begin{aligned} & \text { Intervention Program }\end{aligned}$

- - Soma Pieces

-
 Three visual modes

o Full-scale or scaled-down models of objects

- Conventional-graphic models
o Semiotic models

Top View

Front View

Side View

Framework for 3-Dimensional Visualization

CONVENTIONAL GRAPHIC REPRESENTATION OF THE 3-D MODEL

3-DIMENSIONAL

 MODEL

TALK ABOUT IT

REPRESENT IT
ABSTRACTLY

$$
\begin{aligned}
& \text { SEMIOTIC OR ABSTRACT } \\
& \text { REPRESENTATION OF THE } \\
& \text { 3-D MODEL }
\end{aligned}
$$

top front side

This slide is not to be reproduced in any form without the express permission of Jackie Sack.

- . \mid 3-Dimensional Model Stimulus

Which piece?

Can you rebuild it using loose cubes?

3-Dimensional Model Stimulus

Can you make this figure using
two Soma
pieces?

Rebuild it using loose cubes.
Draw it.
Explain how to build it.

2-D Conventional Graphic Model

Show how these two Soma pieces can be combined to create this figure.

Rebuild it using loose cubes.
Draw it.
Explain how to build it.

2-D Conventional Graphic Model

Show how these two Soma pieces can be combined to create this figure.

-••
 2-D Conventional Graphic Model

Show how these three Soma pieces can be combined to create this figure.

... \quad 2-D Conventional Graphic Model

Which two Soma pieces were combined to create this figure?

- -
 2-D Conventional Graphic Model

Which two Soma pieces were combined to create this figure?

- - Describe it verbally

Use Soma pieces 1, 2, 3, 4 and 5.
5 and 4 go on the lower front.
Stand 3 behind 5, three cubes tall; and 2 next to 3 with its short leg on the ground pointing toward the front, next to 4.
1 goes on top of 2 and 4 .

$\bullet \bullet$
 Represent the figure abstractly

Represent the figure abstractly

Represent the figure abstractly

Represent the figure abstractly

o How many and which Soma pieces do you need to build this figure?

- Build the figure.
- $\begin{aligned} & \text { Beyond cubes... }\end{aligned}$

- - Describe the figure's net

\bullet Describe the 3-D figure

- - Describe the 3-D figure

-. \quad 2-D Implications:
 Reflections

-. \quad 2-D Implications: Rotations

- .	Transformations:
2-D Geometry	

- .	Transformations:
2-D Geometry	

Transformations: Pre-Calculus - Calculus

- Transformations: Back to Geometry

TEKS: Grade 1

(1.6) Geometry and spatial reasoning. The student uses attributes to identify two- and three-dimensional geometric figures. The student compares and contrasts two- and threedimensional geometric figures or both.
The student is expected to:

- (A) describe and identify two-dimensional geometric figures, including circles, triangles, rectangles, and squares (a special type of rectangle);
- (B) describe and identify three-dimensional geometric figures, including spheres, rectangular prisms (including cubes), cylinders, and cones;
- (C) describe and identify two- and three-dimensional geometric figures in order to sort them according to a given attribute using informal and formal language; and
- (D) use concrete models to combine two-dimensional geometric figures to make new geometric figures.

-• TEKS: Grade 2

(2.7) Geometry and spatial reasoning. The student uses attributes to identify two- and three-dimensional geometric figures. The student compares and contrasts two- and threedimensional geometric figures or both.
The student is expected to:

- (A) describe attributes (the number of vertices, faces, edges, sides) of two- and three-dimensional geometric figures such as circles, polygons, spheres, cones, cylinders, prisms, and pyramids, etc.;
- (B) use attributes to describe how 2 two-dimensional figures or 2 three-dimensional geometric figures are alike or different; and
- (C) cut two-dimensional geometric figures apart and identify the new geometric figures formed.

-• TEKS: Grade 3

(3.8) Geometry and spatial reasoning. The student uses formal geometric vocabulary.
The student is expected to identify, classify, and describe two- and three-dimensional geometric figures by their attributes. The student compares two-dimensional figures, three-dimensional figures, or both by their attributes using formal geometry vocabulary.
(3.9) Geometry and spatial reasoning. The student recognizes congruence and symmetry.
The student is expected to:

- (A) identify congruent two-dimensional figures;
- (B) create two-dimensional figures with lines of symmetry using concrete models and technology; and
- (C) identify lines of symmetry in two-dimensional geometric figures.

-•• TEKS: Grade 4

(4.8) Geometry and spatial reasoning. The student identifies and describes attributes of geometric figures using formal geometric language.
The student is expected to:

- (A) identify and describe right, acute, and obtuse angles;
- (B) identify and describe parallel and intersecting (including perpendicular) lines using concrete objects and pictorial models; and
- (C) use essential attributes to define two- and threedimensional geometric figures.
(4.9) Geometry and spatial reasoning. The student connects transformations to congruence and symmetry.
The student is expected to:
- (A) demonstrate translations, reflections, and rotations using concrete models;
- (B) use translations, reflections, and rotations to verify that two shapes are congruent; and
- (C) use reflections to verify that a shape has symmetry.

-•• TEKS: Grade 5

(5.7) Geometry and spatial reasoning. The student generates geometric definitions using critical attributes.
The student is expected to identify essential attributes including parallel, perpendicular, and congruent parts of two- and three-dimensional geometric figures.
(5.8) Geometry and spatial reasoning. The student models transformations.
The student is expected to:

- (A) sketch the results of translations, rotations, and reflections on a Quadrant I coordinate grid; and
- (B) identify the transformation that generates one figure from the other when given two congruent figures on a Quadrant I coordinate grid.
-•• TEKS: Grade 6
(6.6) Geometry and spatial reasoning. The student uses geometric vocabulary to describe angles, polygons, and circles.
The student is expected to:
- (A) use angle measurements to classify angles as acute, obtuse, or right;
- (B) identify relationships involving angles in triangles and quadriaterals; and
- (C) describe the relationship between radius, diameter, and circumference of a circle.

-• TEKS: Grade 7

(7.6) Geometry and spatial reasoning. The student compares and classifies two- and three-dimensional figures using geometric vocabulary and properties.
The student is expected to:

- (A) use angle measurements to classify pairs of angles as complementary or supplementary;
- (B) use properties to classify triangles and quadrilaterals;
- (C) use properties to classify three-dimensional figures, including pyramids, cones, prisms, and cylinders; and
- (D) use critical attributes to define similarity.
(7.7) Geometry and spatial reasoning. The student uses coordinate geometry to describe location on a plane.
The student is expected to:
- (A) locate and name points on a coordinate plane using ordered pairs of integers; and
- (B) graph reflections across the horizontal or vertical axis and graph translations on a coordinate plane.
(7.8) Geometry and spatial reasoning. The student uses geometry to model and describe the physical world.
- The student is expected to:
- (A) sketch three-dimensional figures when given the top, side, and front views;
o (B) make a net (two-dimensional model) of the surface area of a three-dimensional figure; and
- (C) use geometric concepts and properties to solve problems in fields such as art and architecture.

-•• TEKS: Grade 8

(8.6) Geometry and spatial reasoning. The student uses transformational geometry to develop spatial sense.
The student is expected to:

- (A) generate similar figures using dilations including enlargements and reductions; and
- (B) graph dilations, reflections, and translations on a coordinate plane.
(8.7) Geometry and spatial reasoning. The student uses geometry to model and describe the physical world.
The student is expected to:
- (A) draw three-dimensional figures from different perspectives;
- (B) use geometric concepts and properties to solve problems in fields such as art and architecture;

