Is it Scope and Sequence versus Higher Level Thinking and Deep Knowledge?

Dr. Mironychev, Math teacher, Challenge Early College HS

This work was supported by the National Science Foundation under the Grant No. 1556006. All views, conclusions or recommendations expressed here are only of the author and do not necessarily reflect the views of the National Science Foundation.

School year

- 180 days or 40 weeks
- - 6 weeks (2 review weeks, 2 weeks of tests, STAAR/AP tests)
- 180 theorems (properties to learn)

GEOMETRY course

- USA - 1 year
- Mexico - 2 years
- Russia - 4 years

EUCLID

THE THIRTEEN BOOKS OF THE ELEMENTS

Translated with introduction and

 commentary by Sir Thomas L. Heath

Second Edition Unabridged

Proposition 4.

If two triangles have the tre sides equal to two sides respectively, and have the angles contained by the equal straight lines equal, they will also have the base equal to the base, the triangle will be equal to the triangle, and the remaining angles s will be equal to the remaining angles respectively, namely those which the equal sides subtend.

Let $A B C, D E F$ be two triangles having the two sides $A B, A C$ equal to the two sides $D E, D F$ respectively, namely $A B$ to $D E$ and $A C$ to $D F$, and the angle $B A C$ equal to the 10 angle $E D F$

I say that the base $B C$ is also equal to the base $E F$, the triangle $A B C$ will be equal to the triangle $D E F$, and the remaining angles will be equal to the remaining angles respectively, namely those which the equal sides subtend, that is is, the angle $A B C$ to the angle $D E F$, and the angle $A C B$ to the angle $D F E$.

For, if the triangle $A B C$ be applied to the triangle $D E F$, and if the point A be placed so on the point D
and the straight line $A B$

on DE,
then the point B will also coincide with E, because $A B$ is equal to $D E$.

$$
248
$$

BOOK I
[1. 4
25 Again, $A B$ coinciding with $D E$,
the straight line $A C$ will also coincide with $D F$, because the angle $B A C$ is equal to the angle $E D F$;
hence the point C will also coincide with the point F, because $A C$ is again equal to $D F$.
30 But B also coincided with E;
hence the base $B C$ will coincide with the base $E F$.
[For if, when B coincides with E and C with F, the base $B C$ does not coincide with the base $E F$, two straight lines will enclose a space: which is impossible.

Therefore the base $B C$ will coincide with

$$
E F] \text { and will be equal to it. }
$$

Thus the whole triangle $A B C$ will coincide with the whole triangle $D E F$,
and will be equal to it.

GEOMETRY text books:

- McDougal Littell: Ron Larsen, Laurie Boswell, Timothy D. Kanold, Lee Stiff,
- Pearson: Randall I. Charles, Allan E. Bellman, Basia Hall, William G. Handlin, Dan Kennedy, Stuart G. Murphy, Grant Wiggins
- Pensacola Christian College: F. Eugine Seymour
- Publicaciones Cultural: Mario Baldor, Mexico
- Prosveshenie: Pogorelov (Погорелов), Russia

	SAS	ASA	SSS	
McDougal Littell	postulate	postulate	postulate	
Pearson	postulate	postulate	postulate	
Pensacola	theorem	theorem	theorem	
Baldor	theorem	theorem	theorem	
Pogorelov	theorem	theorem	theorem	

Postulate 4-2 Side-Angle-Side (SAS) Postulate

Postulate

If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.

If...
$\overline{A B} \cong \overline{D E}, \angle A \cong \angle D, \overline{A C} \cong \overline{D F}$
Then...
$\triangle A B C \cong \triangle D E F$

Postulate 4-3 Angle-Side-Angle (ASA) Postulate

Postulate

If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the two triangles are congruent.

If...
$\angle A \cong \angle D, \overline{A C} \cong \overline{D F}, \angle C \cong \angle F$

Then...
$\triangle A B C \cong \triangle D E F$

Theorem 4-6

Hypotenuse-Leg (HL) Theorem

If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent. (p. 174)

```
Proof
Given: }\trianglePQR\mathrm{ and }\triangleXY are right triangles, with right angles \(Q\) and \(Y, P R \cong X Z\) and \(\overline{P Q} \cong \overline{X Y}\).
```



```
Prove: \(\quad \triangle P Q R \cong \triangle X Y Z\)
Proof: On \(\triangle X Y Z\), draw \(\overline{Z Y}\).
```



```
Mark point \(S\) so that \(Y S=Q R\). Then, \(\triangle P Q R \cong \triangle X Y S\) by \(S A S\).
Since corresponding parts of congruent triangles are congruent \(\overline{P R} \cong \overline{X S}\). It is given that \(\overline{P R} \cong \overline{X Z}\), so \(\overline{X S} \cong \overline{X Z}\) by the Transitive Property of Congruence. By the Isosceles Triangle Theorem,
\(\angle S \cong \angle Z\), so \(\triangle X Y S \simeq \triangle X Y Z\) by AAS. Therefore, \(\triangle P Q R \cong \triangle X Y Z\) by the Transitive Property of Congruence.
```


Theorem

If a quadrilateral is a parallelogram, then its opposite sides are congruent.

If...
$A B C D$ is a \square

Then...

$\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$

For a proof of Theorem 6-3, see the Reference section on page 683.

Proof

Given: $\square A B C D$
Prove: $\overline{A B} \cong \overline{C D}, \overline{B C} \cong \overline{D A}$

Proof: $\quad \angle 1 \cong \angle 4$ because $\angle 1$ and $\angle 4$ are alternate interior angles and $\overline{A B} \| \overline{C D}$. Likewise, $\angle 2 \cong \angle 3$ because $\angle 2$ and $\angle 3$ are alternate interior angles and $\overline{B C} \| \overline{D A}$. $\overline{A C} \cong \overline{A C}$ by the Reflexive Property of Congruence. $\triangle A B C \cong \triangle C D A$ by $A S A$. Thus $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$ because corresponding parts of congruent triangles are congruent.

Theorem 6-5

Theorem
 If a quadrilateral is a parallelogram, then its opposite angles are congruent.
 If...
 $A B C D$ is a \square.

Then ...
$\angle A \cong \angle C$ and $\angle B \cong \angle D$

For a proof of Theorem 6-5, see Problem 2.
p. 256
p. 688

Theorem 6-5
If a quadrilateral is a parallelogram, then its opposite angles are congruent. (p. 256)

- Proof on p. 257, Problem 2

Proof Using Properties of Parallelograms in a Proof

Given: $\square A B C D$
Prove: $\angle A \cong \angle C$ and $\angle B \cong \angle D$

Why is a flow proof useful here?
A flow proof allows you to see how the pairing of two statements leads to a conclusion.
$\angle A$ and $\angle B$ are supplementary. Consecutive A are supplementary.
$\angle B$ and $\angle C$ are supplementary.
Consecutive $/ \mathrm{s}$
are supplementary.
$\angle C$ and $\angle D$ are consecutive \angle. Def. of consecutive Δ
$\angle C$ and $\angle D$ are supplementary.
Consecutive $/ \mathrm{s}$ are supplementary.

$$
\angle A \cong \angle C
$$

Supplements of the same \angle are \cong.

$$
\angle B \cong \angle D
$$

Supplements of the
same \angle are \cong.

Theorem 6-6

Theorem
If a quadrilateral is a parallelogram, then its diagonals bisect each other.

If...
$A B C D$ is a \square

Then ...

$\overline{A E} \cong \overline{C E}$ and $\overline{B E} \cong \overline{D E}$

You will prove Theorem 6-6 in Exercise 11.
11. Justify Mathematical Arguments (1)(G)

Proof Complete this two-column proof of Theorem 6-6.
Given: $\square A B C D$
Prove: $\overline{A C}$ and $\overline{B D}$ bisect each other at E.

Statements

1) $A B C D$ is a parallelogram.
2) $\overline{A B} \| \overline{D C}$
3) $\angle 1 \cong \angle 4 ; \angle 2 \cong \angle 3$
4) $\overline{A B} \cong \overline{D C}$
5) d. ?
6) $\overline{A E} \cong \overline{C E} ; \overline{B E} \cong \overline{D E}$
7) f . \qquad

Reasons

1) Given
2) a. ?
3) b. ?
4) c . ?
5) ASA
6) e . \qquad
7) Definition of bisector

What is the area as a Geometry concept/term?

+ Topic 13 Area

TOPIC OVERVIEW

13-1 Areas of Parallelograms and Triangles
13-2 Areas of Trapezoids, Rhombuses, and Kites
13-3 Areas of Regular Polygons
13-4 Perimeters and Areas of Similar Figures
13-5 Trigonometry and Area

VOCABULARY

English/Spanish Vocabulary Audio Online:
English Spanish
altitude of a parallelogram, p. 520 altura de un paralelogramo
apothem, p. 532

apotema

base of a parallelogram, $p .520$ base de un paralelogramo
base of a triangle, $p .520$ base du un triángulo
center of a regular polygon, $p .532 \quad$ centro de un polígono regular
composite figure, p. 520
height of a parallelogram, p. 520
height of a trapezoid, p. 526
height of a triangle, p. 520
radius of a regular polygon, p. 532
figura compuesta
altura de un paralelogramo
altura de un trapecio
altura de un triángulo radio de un polígono regular

Area is not a formula!

The area of a rectangle is the product of its base and height.
$A=b h$

p. 521

c note

Key Concept Area of a Parallelogram

The area of a parallelogram is the product of a base and the corresponding height.

$$
A=b h
$$

note \rightarrow Key Concept Area of a Triangle

The area of a triangle is half the product of a base and the corresponding height.

$$
A=\frac{1}{2} b h
$$

Student notes

Scope and Sequence 2018-2019

Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
Main Terms; Cond. Stateme nts	Parallel Lines; Triangles	Transftions; Triangl es, Pypha goras	Similari ty	Right Triangl es; Circles	Quadril aterals	Trigono metry	Area, 3D Figures	3D Figures

PROPOSALS FOR FUTURE GEOMETRY COURSES

- Geometry 1 for Middle School (academic course with proofs rather than a set of activities)
- Geometry 2 for High Schools
- Proofs of theorems and derivation of main folmulae (s) have to be an intrinsic part of the course; they have be explicitly represented and explained in textbooks
- Quadrilaterals have to follow after Triangles
- Similarity should go after Quadrilateral and even after Areas
- Missed theorems:
- Diagonal in Parallelogram makes two congruent triangles (formula for the area of triangles)
- Angles with parallel sides are congruent (centripetal force in Physics)
- Angles with perpendicular sides are congruent (forces and motion of the inclined plane)

Thank you!

