- •
- •
- •
- •
- •
- •
- •
- •

- •

Cryptography

The Making and Breaking of Secret Codes.

5/29/2009

Need for Cryptography

- Many areas of human endeavor require secret communication.
- Modern methods of communication more open and subject to interception.
 – Telegraph, radio, internet.
- The use is rapidly increasing.
- Electronic commerce requires it.

Codes & Ciphers

John C. Polking, Rice University

- Convenience codes.
 - Publicly known no secrecy involved.
 - Morse code telegram & radio.
 - ASCII code computer.
 - Zip, area, ...
- Secret codes or ciphers.
 Today's topic.

Summary

- Four codes used over time -- and how to break them.
 - Substitution ciphers.
 - Caesar's cipher.
 - Monoalphabetic ciphers.
 - Polyalphabetic ciphers.
 - Computer enabled ciphers.
 - Public key ciphers.

Caesar's Cipher

• Used in the gallic wars

– Documented by Suetonius in *Lives of the twelve Caesar's*

- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- DEFGHIJKLMNOPQRSTUVWXYZABC
- Help me \rightarrow KHOS PH
- Algorithm -- simple shift
- Key -- number, the amount of shift

5/29/2009

John C. Polking, Rice University

Breaking the Cipher

Find the key -- there are 26 possibilities.
 We can check them one by one until one makes sense.

- If we know a simple shift code is being used.

John C. Polking, Rice University

Monoalphabetic Ciphers

- Example:
 - ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - QAZWSXEDCRFVTGBYHNUJMIKOLP
 - Help me \rightarrow DSVY TS
- Algorithm -- permutation of the alphabet
 There are 26! -- 4 X 10²⁶ possibilities

Key

- Must be enough information to easily construct the permutation
- Key word -- Rice University
 - ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - RICEUNVSTYZABDFGHJKLMOPQWX
 - Help me \rightarrow SUAG BU

Breaking the Cipher

- Frequency analysis
 Mathematics
- Word and language patterns
 - Linguistics
 - Puzzlers
- Persistence

- The Gold Bug -- Edgar Allan Poe

John C. Polking, Rice University

۲

Alphabet Frequency (%)

A	8.2	J	0.2	S	6.3
В	1.5	K	0.8	Т	9.1
С	2.8	L	4.0	U	2.8
D	4.3	M	2.4	V	1.0
E	12.7	N	6.7	W	2.4
F	2.2	Ο	7.5	X	0.2
G	2.0	P	1.9	Y	2.0
Н	6.1	Q	0.1	Z	0.1
	7.0	R	6.0		

5/29/2009

•

John C. Polking, Rice University

۲

10

۲

Breaking the Cipher (Cont.)

- Frequency analysis invented by middle eastern, Arabian mathematicians in 9th century.
- By the end of the 14th century "anyone" could easily break monoalphabetic ciphers.

Polyalphabetic Ciphers

- Leon Battista Alberti 1460
 - Use two or more cipher alphabets & alternate them
 - ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - QAZWSXEDCRFVTGBYHNUJMIKOLP
 - POLIKUJMNHYTGBVFREDCXSWZAQ
 - Help me \rightarrow DKVF TK
 - $-1.6 \ge 10^{53}$ combinations

Blaise de Vigenere - 1560

- Introduced a convenient keyword
 Made the use of the algorithm easier
- Use 26 cipher alphabets
 - ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - BCDEFGHIJKLMNOPQRSTUVWXYZA
 - CDEFGHIJKLMNOPQRSTUVWXYZAB
 - DEFGHIJKLMNOPQRSTUVWXYZABC
 - EFGHIJKLMNOPQRSTUVWXYZABCD
 - etc

Keyword BOZ

- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- BCDEFGHIJKLMNOPQRSTUVWXYZA
- OPQRSTUVWXYZABCDEFGHIJKLMN
- ZABCDEFGHIJKLMNOPQRSTUVWXY
- Help me \rightarrow ISKQ AD
- THE \rightarrow UVD, HGF, or SIS

Use of the Vigenere Cipher

- Ignored for about 200 years
- Invention of telegraph made codes more important
 - Messages easy to intercept
 - Greatly increased volume of traffic
- Became known as *le chiffre indechiffrable*

John C. Polking, Rice University

Breaking the Vigenere Cipher

- Charles Babbage
 - Invented an early mechanical computer
 - C. 1854 broke the Vigenere code
 - Did not publish the result
- Frederich Wilhem Kasiski (Prussian)
 1863 published the way to break the code

Breaking the Cipher (cont.)

- Weak point is the keyword
 - Look for repeating patterns in the cipher
 - Using BOZ, THE \rightarrow UVD, HGF, or SIS
 - How far apart are appearances of same pattern?
 - Allows determination of the length of the keyword
 - Determines the number of cipher alphabets used
- Frequency analysis on each cipher alphabet
- Requires a lot of traffic

5/29/2009

John C. Polking, Rice University

20th Century Ciphers

- Radio (Marconi ~ 1900)
 - Greater ease of communication
 - Greater ease of interception
- Electro-mechanical devices
 - Encryption and decryption can be semiautomated
 - Polyalphabetic ciphers with more alphabets

The Enigma Machine

- Invented in 1918 by Arthur Scherbius and Richard Ritter
- Keyboard
- 3 rotors or scramblers
- Reflector
- Output lights
- Plug wiring

The Enigma Machine (Cont.)

- The use of the rotors and reflector causes it to rotate through a cycle of about 17,000 cipher alphabets.
- Plug wiring changes the cycle.
- Starting position determines which cycle and where in the cycle the message starts.

John C. Polking, Rice University

20

• Over 10¹⁶ different starting positions.

Key

- Determines the starting position
- Two keys used
 - Daily key used only to encrypt a message key
 - Message key unique to each message

John C. Polking, Rice University

 \bullet

۲

۲

۲

Importance in World War 2

- All countries had similar machines
 Many were confident it was unbreakable
- Poland & England broke enigma
- USA broke Japanese codes
- One of the keys to Allied victory in WW2
- Battle of the Atlantic
- Battle of Midway

5/29/2009

John C. Polking, Rice University

Cracking Enigma (Poland)

- Polish mathematicians in 1930's
 - Espionage by the French
 - Marian Rejewski
 - Broke Enigma by 1934
 - Noticed patterns in the day key
 - Germans improved the Enigma
 - Gave everything to the Allies 2 weeks before the invasion of Poland

Methods

- Look for mathematical patterns
- Exploit the known structure of the machine
- Exploit defective practices
 - Use of daily key to encrypt repeated message key

John C. Polking, Rice University

Cracking Enigma (England)

- Bletchley Park, Alan Turing & ULTRA
 - Continued with the Polish plan
 - Cillies --- obvious message keys
 - Cribs --- routine messages
 - Bombes --- sets of enigma machines
 - Espionage --- find the code books

Advances in Enigma

- Number of rotors increased to 5 or 6
 Greatly increased the length of the cycle
- Complexity of the plug wiring increased
 Increased the number of available cycles
- Elimination of cillies ---- use of randomly generated message keys

John C. Polking, Rice University

Computers and Ciphers

• The ASCII code turns messages into numbers:

Н	е		р	!
1001000	1100101	1101100	1110000	0100001

- Help! -->10010001100101110110011100000100001
- = 19,540,949,025
- ASCII code is the computer's alphabet
- A cipher can be any function that is 1-1

Modular Arithmetic

- $A \mod(N) = remainder$ when A is divided by N
- Example:
- $1 \mod(3) = 1$, $5 \mod(3) = 2$, $9 \mod(3) = 0$
- $2 \mod(3) = 2, 6 \mod(3) = 0, 10 \mod(3) = 1$
- $3 \mod(3) = 0$, $7 \mod(3) = 1$, $11 \mod(3) = 2$
- 4 mod(3) = 1, 8 mod(3) = 2, 12 mod(3) = 0

John C. Polking, Rice University

 \bullet

۲

۲

Clock Arithmetic

- The clock uses arithmetic mod(12) to measure hours
- It uses arithmetic mod(60) to measure minutes and seconds

5/29/2009

John C. Polking, Rice University

Cipher With Modular Arithmetic

Encryption Algorithm				
М	M^3	$M^3 \mod(11)$		(
1	1	1		
2	8	8		1
3	27	5		
4	64	9		4
5	125	4		
6	216	7		
7	343	2		
8	512	6		
9	729	3		
10	1000	10		1

Decryption Algorithm				
С	C ⁷	C ⁷ mod(11)		
1	1	1		
2	128	7		
3	2187	9		
4	16384	5		
5	78125	3		
6	279936	8		
7	823543	6		
8	2097152	2		
9	4782969	4		
10	1000000	10		

5/29/2009

John C. Polking, Rice University

 \bullet

۲

۲

30

Data Encryption Standard (DES)

- Originally called Lucifer

 Invented at IBM by Horst Feistal
 Adopted by US government in 1975

 There are 2⁵⁶ (~10¹⁷)possible secret keys

 Called a 56 bit cipher
- Now out of date

- Advanced Encryption Standard adopted in 2001

John C. Polking, Rice University

Public Key Codes

- Encryption algorithm and key are public information
 - Anyone can use it to communicate with the holder of the decryption algorithm
 - This eliminates the need to secretly convey the key
- Decryption key is not public, and is very hard to discover

5/29/2009

John C. Polking, Rice University

The RSA Code

- Ronald Rivest, Adi Shamir & Leonard Adelman -- 1977

- 2 very large primes P & Q (private)
- $N = P \times Q$ & number E (public)
- Message M (a number)
- Encrypt the message with the formula
- $C = M^E \mod(N)$

John C. Polking, Rice University

۲

Decryption in RSA

- Decrypter knows a secret number D with
- $E \ge D \mod((P-1) \ge 1) = 1$
- $C^{D} \mod (N) = (M^{E})^{D} \mod(N)$
- $= M^{ED} \mod(N)$
- = M (Theorem of Euler)

John C. Polking, Rice University

34

Example

- Take P = 89,833 and Q = 945,677 (private)
- N = PxQ = 84,953,001,941 (public)
- E = 1,080,461 (public)
- Help! \rightarrow 19,540,949,025 = M
- $C = 19,540,949,025^{1,080,461} \mod(N)$
- = 6,499,326,013

John C. Polking, Rice University

Example (Cont.)

- To decode use D = 235,877 (private)
- C = 6,499,326,013
- $C^{D} \mod(N) = 19,540,949,025$
- = M
- \rightarrow Help!

John C. Polking, Rice University

۲

۲

Breaking RSA (Brute Force)

- Need to find the integer D
- Try all possibilities one by one
- If P & Q are large, there are simply too many choices for D. Say about 10²⁰⁰

John C. Polking, Rice University

Breaking RSA (Factoring)

- The best way is to factor N (= P x Q)
 - In practice both P & Q have 100 to 200 digits
 - The code can be made more secure by choosing larger primes
 - N has as many as 400 digits
 - Knowing P, Q & E, it is easy to find D
- Factoring large numbers is an extremely difficult problem

Example

- 1977 Martin Gardner posed a challenge
 - Factor a number with 129 digits, and use it to decode a message
 - Many participants
- Done in 1994 by a team of 600 volunteers
- Modern RSA uses Ns with over 200 digits

John C. Polking, Rice University

Pretty Good Privacy (PGP)

- Phil Zimmermann --- 1991
 - Encryption for the masses
 - Uses a standard encryption method (like DES) for the message
 - Uses RSA only to encrypt the key
- Conflict with US government
 - Eventually everything was settled in favor of personal privacy

Advanced Encryption Algorithm

- By mid 1990s DES was clearly out of date
- 1997 NIST announced an open competition
 Many competitors from around the world
 - 15 semi-finalists --- NIST asked for comments
 - 1999 5 finalists
 - Oct. 2000 Rijndael declared the best
 - Nov. 2001 Rijndael adopted as the AES

Rijndael

• Invented by Joan Daemen and Vincent Rijmen.

- Operates on 128 bit blocks
- Uses modular arithmetic and several polynomial mappings
- Has a 128 bit key
 Or 192 or 256
- Won on the basis of security, performance, efficiency, implementability, and flexibility

5/29/2009

The future

- Quantum computing
 - New algorithms for factoring numbers very quickly
 - There are at present no quantum computers
 - Area of intense research
- The invention of new algorithms for solving equations is always possible

National Security Agency (NSA)

- America's Black Chamber
- Largest employer of mathematicians in the world
- Once ultra secret, it is becoming more and more open
- They even run a museum

John C. Polking, Rice University

Bibliography

- *The Code Book*, by Simon Singh, New York: Doubleday, 1999
- *The Codebreakers*, by David Kahn, New York: Scribners, 1996 & 1999
- *Cryptography*, by Lawrence Dwight Smith, New York: Dover
- *Alan Turing: The Enigma*, by David Hodges, London: Vintage, 1992

John C. Polking, Rice University

Web Sites

- The Enigma Machine

 <u>http://www.math.arizona.edu/~dsl/enigma.htm</u>
- Bletchley Park
 - http://www.cranfield.ac.uk/ccc/bpark/
- RSA Security's Frequently Asked Questions

 <u>http://www.rsasecurity.com/rsalabs/</u>
- The National Security Agency <u>http://www.nsa.gov/</u>

5/29/2009

John C. Polking, Rice University