Cryptography

The Making and Breaking of Secret Codes.

Need for Cryptography

- Many areas of human endeavor require secret communication.
- Modern methods of communication more open and subject to interception.
- Telegraph, radio, internet.
- The use is rapidly increasing.
- Electronic commerce requires it.

Codes \& Ciphers

- Convenience codes.
- Publicly known - no secrecy involved.
- Morse code - telegram \& radio.
- ASCII code - computer.
- Zip, area, ...
- Secret codes or ciphers.
- Today's topic.

Summary

- Four codes used over time -- and how to break them.
- Substitution ciphers.
- Caesar's cipher.
- Monoalphabetic ciphers.
- Polyalphabetic ciphers.
- Computer enabled ciphers.
- Public key ciphers.

Caesar's Cipher

- Used in the gallic wars
- Documented by Suetonius in Lives of the twelve Caesar's

- ABCD FG IJK NO QRSTUVWXYZ
 - DEFG IJ LMN QR TUVWXYZABC
 - Help me \rightarrow KHOS PH

- Algorithm -- simple shift
- Key -- number, the amount of shift

Breaking the Cipher

- Find the key -- there are 26 possibilities. We can check them one by one until one makes sense.
- If we know a simple shift code is being used.

Monoalphabetic Ciphers

- Example:
- ABCD FG IJK NO QRSTUVWXYZ
- QAZW XE CRF GB HNUJMIKOLP
- Help me \rightarrow DSVY TS
- Algorithm -- permutation of the alphabet
- There are 26! -- 4 X 10^{26} possibilities

Key

- Must be enough information to easily construct the permutation
- Key word -- Rice University
- ABCD FG IJK NO QRSTUVWXYZ
- RICE NV TYZ DF HJKLMOPQWX
- Help me \rightarrow SUAG BU

Breaking the Cipher

- Frequency analysis
- Mathematics
- Word and language patterns
- Linguistics
- Puzzlers
- Persistence
- The Gold Bug -- Edgar Allan Poe

Alphabet Frequency (\%)

A	8.2	J	0.2	S	6.3
B	1.5	K	0.8	T	9.1
C	2.8	L	4.0	U	2.8
D	4.3	M	2.4	V	1.0
E	12.7	N	6.7	W	2.4
F	2.2	O	7.5	X	0.2
G	2.0	P	1.9	Y	2.0
H	6.1	Q	0.1	Z	0.1
I	7.0	R	6.0		

Breaking the Cipher (Cont.)

- Frequency analysis invented by middle eastern, Arabian mathematicians in $9^{\text {th }}$ century.
- By the end of the $14^{\text {th }}$ century "anyone" could easily break monoalphabetic ciphers.

Polyalphabetic Ciphers

- Leon Battista Alberti - 1460
- Use two or more cipher alphabets \& alternate them
- ABCD FG IJK NO QRSTUVWXYZ
- QAZWSXE CRF GBYHNUJMIKOLP
- POLI UJMNHYTGBV REDCXSWZAQ
- Help me \rightarrow DKVF TK
- 1.6×10^{53} combinations

Blaise de Vigenere - 1560

- Introduced a convenient keyword
- Made the use of the algorithm easier
- Use 26 cipher alphabets
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- BCDEFGHIJKLMNOPQRSTUVWXYZA
- CDEFGHIJKLMNOPQRSTUVWXYZAB
- DEFGHIJKLMNOPQRSTUVWXYZABC
- EFGHIJKLMNOPQRSTUVWXYZABCD
- etc

Keyword BOZ

- ABCD FG IJK NO QRSTUVWXYZ
- BCDEFGH JKLMNOP RSTUVWXYZA
- OPQR TUVWXYZ BCDEFGHIJKLMN
- ZABC EFGHIJ LMNOPQRSTUVWXY
- Help me \rightarrow ISKQ AD
- THE \rightarrow UVD, HGF, or SIS

Use of the Vigenere Cipher

- Ignored for about 200 years
- Invention of telegraph made codes more important
- Messages easy to intercept
- Greatly increased volume of traffic
- Became known as le chiffre indechiffrable

Breaking the Vigenere Cipher

- Charles Babbage
- Invented an early mechanical computer
- C. 1854 broke the Vigenere code
- Did not publish the result
- Frederich Wilhem Kasiski (Prussian)
- 1863 published the way to break the code

Breaking the Cipher (cont.)

- Weak point is the keyword
- Look for repeating patterns in the cipher
- Using BOZ, THE \rightarrow UVD, HGF, or SIS
- How far apart are appearances of same pattern?
- Allows determination of the length of the keyword
- Determines the number of cipher alphabets used
- Frequency analysis on each cipher alphabet
- Requires a lot of traffic

20th Century Ciphers

- Radio (Marconi ~ 1900)
- Greater ease of communication
- Greater ease of interception
- Electro-mechanical devices
- Encryption and decryption can be semiautomated
- Polyalphabetic ciphers with more alphabets

The Enigma Machine

- Invented in 1918 by Arthur Scherbius and Richard Ritter
- Keyboard
- 3 rotors or scramblers
- Reflector
- Output lights
- Plug wiring

The Enigma Machine (Cont.)

- The use of the rotors and reflector causes it to rotate through a cycle of about 17,000 cipher alphabets.
- Plug wiring changes the cycle.
- Starting position determines which cycle and where in the cycle the message starts.
- Over 10^{16} different starting positions.

Key

- Determines the starting position
- Two keys used
- Daily key used only to encrypt a message key
- Message key unique to each message

Importance in World War 2

- All countries had similar machines
- Many were confident it was unbreakable
- Poland \& England broke enigma
- USA broke Japanese codes
- One of the keys to Allied victory in WW2
- Battle of the Atlantic
- Battle of Midway

Cracking Enigma (Poland)

- Polish mathematicians in 1930's
- Espionage by the French
- Marian Rejewski
- Broke Enigma by 1934
- Noticed patterns in the day key
- Germans improved the Enigma
- Gave everything to the Allies 2 weeks before the invasion of Poland

Methods

- Look for mathematical patterns
- Exploit the known structure of the machine
- Exploit defective practices
- Use of daily key to encrypt repeated message key

Cracking Enigma (England)

- Bletchley Park, Alan Turing \& ULTRA
- Continued with the Polish plan
- Cillies --- obvious message keys
- Cribs --- routine messages
- Bombes --- sets of enigma machines
- Espionage --- find the code books

Advances in Enigma

- Number of rotors increased to 5 or 6
- Greatly increased the length of the cycle
- Complexity of the plug wiring increased
- Increased the number of available cycles
- Elimination of cillies --- use of randomly generated message keys

Computers and Ciphers

- The ASCII code turns messages into numbers:

H	e	I	p	!
1001000	1100101	1101100	1110000	0100001

- Help! -->10010001100101110110011100000100001
- = 19,540,949,025
- ASCII code is the computer's alphabet
- A cipher can be any function that is $1-1$

Modular Arithmetic

- $\mathrm{A} \bmod (\mathrm{N})=$ remainder when A is divided by N
- Example:
- $1 \bmod (3)=1,5 \bmod (3)=2,9 \bmod (3)=0$
- $2 \bmod (3)=2,6 \bmod (3)=0,10 \bmod (3)=1$
- $3 \bmod (3)=0,7 \bmod (3)=1,11 \bmod (3)=2$
- $4 \bmod (3)=1,8 \bmod (3)=2,12 \bmod (3)=0$

Clock Arithmetic

- The clock uses arithmetic $\bmod (12)$ to measure hours
- It uses arithmetic $\bmod (60)$ to measure minutes and seconds

Cipher With Modular Arithmetic

Encryption Algorithm		
\mathbf{M}	\mathbf{M}^{3}	$\mathbf{M}^{3} \bmod (11)$
1	1	1
2	8	8
3	27	5
4	64	9
5	125	4
6	216	7
7	343	2
8	512	6
9	729	3
10	1000	10

Decryption Algorithm		
C	C^{7}	$C^{7} \bmod (11)$
1	1	1
2	128	7
3	2187	9
4	16384	5
5	78125	3
6	279936	8
7	823543	6
8	2097152	2
9	4782969	4
10	10000000	10

Data Encryption Standard (DES)

- Originally called Lucifer
- Invented at IBM by Horst Feistal
- Adopted by US government in 1975
- There are $2^{56}\left(\sim 10^{17}\right)$ possible secret keys
- Called a 56 bit cipher
- Now out of date
- Advanced Encryption Standard adopted in 2001

Public Key Codes

- Encryption algorithm and key are public information
- Anyone can use it to communicate with the holder of the decryption algorithm
- This eliminates the need to secretly convey the key
- Decryption key is not public, and is very hard to discover

The RSA Code

- Ronald Rivest, Adi Shamir \& Leonard Adelman -- 1977
- 2 very large primes P \& Q (private)
- $\mathrm{N}=\mathrm{P}$ x Q \& number E (public)
- Message M (a number)
- Encrypt the message with the formula

$$
C=M^{E} \bmod (N)
$$

Decryption in RSA

- Decrypter knows a secret number D with $\mathrm{E} \times \mathrm{D} \bmod ((\mathrm{P}-1) \mathrm{x}(\mathrm{Q}-1))=1$
$\mathrm{C}^{\mathrm{D}} \bmod (\mathrm{N})=\left(\mathrm{M}^{\mathrm{E}}\right)^{\mathrm{D}} \bmod (\mathrm{N})$
$=\mathrm{M}^{\mathrm{ED}} \bmod (\mathrm{N})$
= M (Theorem of Euler)

Example

- Take $\mathrm{P}=89,833$ and $\mathrm{Q}=945,677$ (private)
- $\mathrm{N}=\mathrm{PxQ}=84,953,001,941$ (public)
- $\mathrm{E}=1,080,461$ (public)
- Help! \rightarrow 19,540,949,025 = M
- $\mathrm{C}=19,540,949,025^{1,080,461} \bmod (\mathrm{~N})$
- $=6,499,326,013$

Example (Cont.)

- To decode use $\mathrm{D}=235,877$ (private)
- $C=6,499,326,013$
- $C^{\mathrm{D}} \bmod (\mathrm{N})=19,540,949,025$
$=\mathrm{M}$
\rightarrow Help!

Breaking RSA (Brute Force)

- Need to find the integer D
- Try all possibilities one by one
- If P \& Q are large, there are simply too many choices for D. Say about 10^{200}

Breaking RSA (Factoring)

- The best way is to factor $\mathrm{N}(=\mathrm{P} \times \mathrm{Q})$
- In practice both P \& Q have 100 to 200 digits
- The code can be made more secure by choosing larger primes
- N has as many as 400 digits
- Knowing P, Q \& E, it is easy to find D
- Factoring large numbers is an extremely difficult problem

Example

- 1977 Martin Gardner posed a challenge
- Factor a number with 129 digits, and use it to decode a message
- Many participants
- Done in 1994 by a team of 600 volunteers
- Modern RSA uses Ns with over 200 digits

Pretty Good Privacy (PGP)

- Phil Zimmermann --- 1991
- Encryption for the masses
- Uses a standard encryption method (like DES) for the message
- Uses RSA only to encrypt the key
- Conflict with US government
- Eventually everything was settled in favor of personal privacy

Advanced Encryption Algorithm

- By mid 1990s DES was clearly out of date
- 1997 NIST announced an open competition
- Many competitors from around the world
- 15 semi-finalists --- NIST asked for comments
- 19995 finalists
- Oct. 2000 Rijndael declared the best
- Nov. 2001 Rijndael adopted as the AES

Rijndael

- Invented by Joan Daemen and Vincent Rijmen.
- Operates on 128 bit blocks
- Uses modular arithmetic and several polynomial mappings
- Has a 128 bit key
- Or 192 or 256
- Won on the basis of security, performance, efficiency, implementability, and flexibility

The future

- Quantum computing
- New algorithms for factoring numbers very quickly
- There are at present no quantum computers
- Area of intense research
- The invention of new algorithms for solving equations is always possible

National Security Agency (NSA)

- America's Black Chamber
- Largest employer of mathematicians in the world
- Once ultra secret, it is becoming more and more open
- They even run a museum

Bibliography

- The Code Book, by Simon Singh, New York: Doubleday, 1999
- The Codebreakers, by David Kahn, New York: Scribners, 1996 \& 1999
- Cryptography, by Lawrence Dwight Smith, New York: Dover
- Alan Turing: The Enigma, by David Hodges, London: Vintage, 1992

Web Sites

- The Enigma Machine
- http://www.math.arizona.edu/~dsl/enigma.htm
- Bletchley Park
- http://www.cranfield.ac.uk/ccc/bpark/
- RSA Security's Frequently Asked Questions
- http://www.rsasecurity.com/rsalabs/
- The National Security Agency
- http://www.nsa.gov/

