Spy Geometry

Around Me

National Council of Teachers of Mathematics 2011 Annual Meeting

Susan Troutman

Rice University School Mathematics Project
Associate Director for Secondary Programs
troutman@rice.edu

Carolyn White

Rice University School Mathematics Project

Associate Director for Elementary and Intermediate Programs

clwhite@rice.edu

Copy of handouts available at http://rusmp.rice.edu/

in

Names

Write your name in capital letters across a large sheet of paper.

Identify the geometry terms or shapes located in your name.

Possible vocabulary words that can be used:

Parallel lines Perpendicular lines

Triangle Congruent Square

Rectangle Trapezoid

Translation

Obtuse angle

Acute angle

Right angle Supplementary angles Circle

Line segment

Edges Vertices

EXAMPLE:

Geometry Big Square Puzzle

Square	Rectangle	Pentagon	Hexagon
Circle	Rectangle Pentagon	Parallelogram	Decagon
Triangle	arenbS Octagon	Circle Labezoid Pentagon	Rectangle Triangle
	Parallelogram Decagon	Trapezoid	Rhombus

These squares will be cut apart. Students will match the picture with the correct term to form a big square that is 4 squares across and 4 squares down.

Created by: Susan Troutman - Rice University School Mathematics Project

Objective: Match 3-D shapes with their name, uses in real

life, and the number of faces, edges, and vertices.

Materials for each team: A set of 32 cards and the directions

sheet

Directions:

1. Teams can work together in groups of 2-4 players.

- 2. Players will try to make complete sets of four cards by matching the following:
 - picture of a 3-D shape
 - name of the 3-D shape
 - real-life use of the 3-D shape
 - number of faces, edges, and vertices
- 3. Players should be able to make eight complete sets of four matching cards.

Extension: Teams can use the cards to play a Matching Pairs Memory game. All cards will be shuffled and placed face down. Players will take turns turning over two cards at a time in an attempt to make a match. If they are successful, they keep those cards and take another turn. If they do not make a match, the cards are returned face down and play continues with the next player until all cards have been paired up.

Created by: Susan Troutman - Rice University School Mathematics Project

Created by: Susan Troutman - Rice University School Mathematics Project

Created by: Susan Troutman - Rice University School Mathematics Project

Triangular Prism	Square Pyramid
Cylinder	Cube
Rectangular prism	Sphere
Cone	Pentagonal prism

6 Faces	6 Faces
12 Edges	12 Edges
8 Vertices	8 Vertices
0 Faces 0 Edges 0 Vertices	5 Faces 9 Edges 6 Vertices
7 Faces	5 Faces
15 Edges	8 Edges
10 Vertices	5 Vertices
2 Faces	1 Faces
0 Edges	0 Edges
0 Vertices	1 Vertices

Recording Sheet for Spaghetti and Meatballs for All! A Mathematical Story

Number of	Sketch of table arrangements	Total
Tables		number of
		seats available
		avallable

Recording Sheet for Spaghetti and Meatballs for All! A Mathematical Story

Number of Tables	Sketch of table arrangements	Total number of seats available
8		32
8		30
8		24
8		18
8		12
8		16
8		18
8		20
8		24
8		32

Perimeters of Polygons

An Area Game of Categories

ROLLING RECTANGLES GAME

For each pair of students: grid paper (p. 62), two dice, one score chart (below), and a writing utensil.

Objective: Find rectangle areas that meet given conditions.

GAME RULES

- Roll the dice. Those numbers reflect dimensions of a rectangle.
- Sketch the rectangle on grid paper: label the dimensions, area, and perimeter.
- Enter the area of your rectangle as your "score" in one of the ten boxe's below.
- If the area will not fit a category, enter it in CHANCE (if available) or enter a zero score in the box of your choice.
- Alternate rolls for ten turns. If you fit all categories, score 10 extra bonus points.
- Total your column. Highest score wins!

SCORE CHART

Category	Player 1: Score	Player 2: Score
1) Area (A) = Perimeter (P)		
2) Area = Even number		, *
3) $P - A = 4$ or $A - P = 4$		
4) Area = Perfect square		
5) Perimeter > Area	1	
6) CHANCE		
7) Area = Odd number		
8) Area = Prime number		·
9) Area = Perfect Number		
10) Area > Perimeter		
Bonus Points (10):		
GRAND TOTAL		

- Which categories were hardest and easiest to roll? Why?
- How many different areas with perfect number dimensions can be rolled?

Geometry and Measurement Scavenger Hunt

- Divide a large sheet of paper or poster board into four sections and label each section as shown below.
- Look through a newspaper or magazine and find different items for each group listed.
- Cut out the items found and tape them in the correct section of the paper.
 Label each item with the correct name or measurements.
- Your goal is to find as many different items as possible within the time limit.

Geometric Terms/Figures	Two-dim	Two-dimensional figures	
Examples:	Examples:		
Line segment Ray Acute angle Obtuse angle Right angle Parallel lines Perpendicular lines Transversal	Circle Triangle Quadrilateral Square Rectangle Parallelogram Trapezoid	Pentagon Hexagon Heptagon Octagon Nonagon Decagon	
Three-dimensional figures	Comparing Perimeter and Area		
Examples:	Examples:		
Cube Rectangular prism Triangular prism Prisms Pyramids Cylinder Cone	Perimeter = Area Perimeter > Area Perimeter < Area		

Bibliography

- Burns, Marilyn, and Gordon Silveria. *The Greedy Triangle*. New York: Scholastic, 1994. Print.
- Burns, Marilyn. Spaghetti and Meatballs for All! New York: Scholastic, 1997. Print.
- Clement, Rod. *Counting on Frank*. Milwaukee: G. Stevens Children's, 1991. Print.
- Neuschwander, Cindy, and Bryan Langdo. *Mummy Math: an Adventure in Geometry*. New York: Henry Holt, 2005. Print.
- Neuschwander, Cindy, and Wayne Geehan. Sir Cumference and the Dragon of Pi: a Math Adventure. Watertown, MA: Charlesbridge, 1999. Print.
- Tompert, Ann, and Robert Andrew Parker. *Grandfather Tang's Story*.

 New York: Crown, 1990. Print.