Investigating Functional Inverses from the Concrete to the Symbolic

Materials: Patty Paper, rulers, colored pencils, Miras, grid paper
Investigation I:

1. Fold a sheet of Patty Paper twice to form the axes of a Cartesian plane. Label the x-axis and the y-axis.
2. Carefully fold your sheet of Patty Paper to form the line $y=x$. Label this line.
3. What are the characteristics of all the points that lie on the line $y=x$?
4. Sketch the function $y=2 x+1$ on your Cartesian plane.
5. Fold the sheet of Patty Paper along the line $y=x$ to find the reflection of $y=2 x+1$ across the line $y=x$. You may also use a Mira to find the reflection. Sketch this image a different color from your sketch of $y=2 x+1$.
6. Unfold the sheet of Patty Paper. Describe the relationship between the original graph and its reflection across the line $y=x$.
7. Make two tables of x - and y-values, one for $y=2 x+1$ and one for its reflection across the line $y=x$. Describe the relationship between the two tables.
8. What are the x - and y-intercepts of $y=2 x+1$ and its reflection across the line $y=x$? Label them on your Cartesian plane. Describe the relationships that you see.
9. Find the equation of this image of $y=2 x+1$?
10. Is this image of $y=2 x+1$ a function? Explain.

Investigation II:

1. Fold a sheet of Patty Paper twice to form the axes of a Cartesian plane. Label the x-axis and the y-axis.
2. Carefully fold your sheet of Patty Paper to form the line $y=x$. Label this line.
3. Sketch the function $y=x^{2}$ on your Cartesian plane.
4. Fold the sheet of Patty Paper along the line $y=x$ to find the reflection of $y=x^{2}$ across the line $y=x$. You may also use a Mira to find the reflection. Sketch this image a different color from your sketch of $y=x^{2}$.
5. Unfold the sheet of Patty Paper. Describe the relationship between the original graph and its reflection across the line $y=x$.
6. Make two tables of x - and y-values, one for $y=x^{2}$ and one for its reflection across the line $y=x$. Describe the relationship between the two tables.
7. What are the x - and y-intercepts of $y=x^{2}$ and its reflection across the line $y=x$? Label them on your Cartesian plane. Describe the relationships that you see.
8. Find the equation of this image of $y=x^{2}$?
9. Is this image of $y=x^{2}$ a function? Explain.

Investigation III:

1. Fold a sheet of Patty Paper twice to form the axes of a Cartesian plane. Label the x-axis and the y-axis.
2. Carefully fold your sheet of Patty Paper to form the line $y=x$. Label this line.
3. Sketch the function $y=x^{3}$ on your Cartesian plane.
4. Fold the sheet of Patty Paper along the line $y=x$ to find the reflection of $y=x^{3}$ across the line $y=x$. You may also use a Mira to find the reflection. Sketch this image in a different color from your sketch of $y=x^{3}$.
5. Unfold the sheet of Patty Paper. Describe the relationship between the original graph and its reflection across the line $y=x$.
6. Make two tables of x - and y-values, one for $y=x^{3}$ and one for its reflection across the line $y=x$. Describe the relationship between the two tables.
7. What are the x - and y-intercepts of $y=x^{3}$ and its reflection across the line $y=x$? Label them on your Cartesian plane. Describe the relationships that you see.
8. Find the equation of this image of $y=x^{3}$?
9. Is this image of $y=x^{3}$ a function? Explain.

Summary:

1. In the three investigations, which of the functions had images that were functions?
2. What would you have to do to a function whose image was not a function to make its image a function?
3. Describe the images of points on the original function that intersected the line $y=x$?
4. Repeat Investigation I for $y=4$? Explain what you observe.
5. Explain the relationship between a function and its inverse. Your explanation should include descriptions of the relationships in tables, graphs, and equations.
6. Is the inverse of a function always a function? Explain.
7. Is the inverse of a function always a relation? Explain.
8. Name two functions that are their own inverses.
