
There's Math behind the Music! 

This is a lesson that shows the mathematical structure behind musical pitch.  It is intended for a 
high school audience.  The links in this document are all either image files or music files, with 
one exception, the executable file Wtune.exe that can be found here.  In the case of music files, 
they are in mp3 format.  If you're having trouble playing mp3's, you might want to pick up 
Winamp.  Both Winamp and Wtune are free. 

Disclaimer:  I'm a professional math teacher, but not quite as professional a musician.  While I 
certainly know what I'm doing when I'm playing,, I may be a tad off in some of my musical 
terminology.  I apologize for any errors.  Feel free to let me know at charlie.burrus@rice.edu.   

 

Introduction 

What is Sound? – it's waves or vibrations through the air (or whatever medium you’re in).  
Compare with waves in water (which are actually transverse waves, which move up and down as 
well as side to side and are therefore different from sound waves but still very similar in many 
respects), or a wave through a crowd of people when someone pushes at the back.  Note that 
when a wave travels through the air, the air itself doesn't travel very much, it just wiggles.  There 
is a pretty cool java applet online that illustrates sound waves.  
What is Volume? – how loud the sound is = how big the waves are. 
What is Pitch? – how high or low the sound is = how frequently the waves hit your ear.  This 
does not mean that the waves are traveling faster, it just means that there are more of them. 
What is Timbre or Tone? – what kind of sound it is – we’ll get into this later. 

 

Pass out Piano Keys sheet 

How to Measure Pitch  

Out of the concepts mentioned above, what we're really interested in today is pitch.  Musicians 
use notes, or letters, to measure pitch.  Play a melody in a few different keys; see how the 
melody is the same no matter what key you play in.  This tells us that the notes relate to each 
other in similar ways.  Notice from the piano keys that the notes repeat over and over, that they 
are cyclical.  Notice also that all the black keys have two names:  C# (C 'sharp') and Db (D 'flat') 
are the same note. 

Play the octaves and see how all the C’s, A’s and D’s (in that order) are similar to each other.  
You can tell that even though the pitches are different, there’s something about them that sounds 
the same.  We'll see why in a second. 

Mathematicians measure pitch in hertz (Hz), or vibrations (waves) per second.  Mathematicians 
generally refer to pitch as frequency.  Fire up Wtune.exe, explain what it’s doing, and play the 
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file with the ascending notes (the ascending notes are C, E, G, repeated three times).  Notice that 
the frequencies, unlike the note names, do not repeat, but keep on getting bigger as the notes get 
higher.  Notice also that these notes sound pretty good together.  This is not by accident.  These 
three tones are an example of a major triad, which we will go over in a bit. 

Now let's look at timbre or tone.  Play the file of the many C's.  This is a C pitch played by 
several instruments.  We can tell it's the same note each time, but we can also tell that it sounds 
very different each time.  This is called timber or tone.  When you hear a note, you're generally 
not just hearing one note, but a complex combination of several notes that are all related.  These 
notes are called harmonics, or overtones.  Play the construction of a note.  The first tone, which 
is also the last tone, is a combination of the six tones that follow it.  When combined, the tone 
sounds fuller and richer.  Unless we specifically listen for the tones, we don't consciously hear 
them, but they're there just the same.  Here is a visual illustration of this sound's components, 
including the final composite tone. 

Now show the illustration of the plucked guitar string (footnote:  I ripped this off from Catherine 
Schmidt-Jones' article from the Rice Connexions website).  Notice that when a string vibrates, 
the shape of that vibration is a combination of lots of simple vibrations.  Each one of these 
vibrations corresponds to an overtone or harmonic.  Notice that in each illustration, the string 
gets "divided" into more and more equal sections.  The length of the section and the frequency of 
the vibrations are inversely proportional (and we'll see more of that in a second). 

Major Triads 

Now take a look at Wtune, and play the construction of a note again.  Watch the frequency of the 
different tones, and notice that they are all multiples of the first one.  Check out the illustration of 
this note.  The notes that correspond to these overtones are:  A - A - E - A - C#.  The notes A, C# 
and E make up a major triad, just like the C-E-G that we heard earlier.  We noticed that the major 
triad sounded pretty good before, and now we can start to see why the notes sound good 
together.  It's because that unless we hear a remarkably pure tone (like a sine wave generated 
from a synthesizer), when we hear a A we also hear a C# and an E within it.  We might not 
consciously notice the overtones, but we hear them nonetheless.  So when the other notes are 
added, it reinforces what we already hear, and it seems "right."  Each of the 12 notes on the scale 
has two other notes that correspond to it that together form a major triad, and the relationships in 
frequency are all identical.   

Editorial note:  this is not to imply that all good music must be based on major triads.   

 

The Circle of Fifths 

Pass out Circle of Fifths sheet 
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So we've seen the notes laid out on a piano keyboard, in ascending order.  We've also noticed 
that musicians see the notes in a cyclical pattern, with repetition occurring every 12 notes.  Now 
we can look at the notes in a different order, what is called the "Circle of Fifths". 

Look at the top "slice" of the circle, which corresponds to the note C.  You'll notice that just 
inside the outer circle is another circle that has all the major triads that correspond to the notes.  
The last note of the C major triad, G, is also the next slice over if you move clockwise.  The last 
note of the G triad is D, which is the next slice over, in the 2 o'clock position.  This pattern 
continues all through the notes. 

A little nomenclature:  An interval is merely the relationship between two notes.  Intervals are 
defined by how far apart the notes are.  The intervals that make up a major triad are called a third 
(eg, from C to E) and a fifth (eg, from C to G).  This probably originates from one of two places:  
either how the pianist plays the triad (with fingers #1, 3 and 5), or the order that the notes fall in 
a major scale.  The major scale is not really relevant to our discussion right now, so I won't go 
into it, although how it originated would be interesting as well.  Unfortunately, these terms can 
be quite misleading, since one way to find the third of a note is to step up four notes on the piano 
keys (don't forget the black ones!), and the way to find the fifth of a note is to step up seven 
notes.  The interval from one note to the next note up with the same name (eg, from A to A) is 
called an octave. 

So the Circle of Fifths gets its name from the order of the notes:  as you go clockwise around the 
circle, the next note you run into will be the fifth of the note that you're on right now.  The circle 
of fifths is vital for musicians that have to transpose from one key to another on the fly, or for 
those that do a lot of improvising. 

But really what we want to do with the circle of fifths is look at how the frequencies relate to 
each other.  Let's recall what we heard earlier when we listened to the overtones:  C-C-G-C-E-G.  
We can listen to the overtones of an A also, and note the frequencies and notes: 
110-A 
220-A 
330-E 
440-A 
550-C# 
660-E 

If you've got a guitar, these are the harmonics for the A string.  You can create this harmonics by 
plucking the string while holding your finger lightly in the middle of the string, then a third of 
the way down the string, then a fourth of the way down, etc. 

Calculating Frequencies using Intervals 

Let's look at those frequencies for a minute.  We have three A's, with frequencies of 110, 220, 
and 440 Hz.  We also have 2 E's with frequencies of 330 and 660 Hz.  We can see pretty quickly 
that when you go up an octave, the frequency doubles.  And we can see that since it's true for the 



A, the E, and earlier the C and G, this seems to be the case for all notes.  Similarly, when you go 
down an octave, the frequency gets halved.  

We can also notice that when we go from an A to the next E (either from 220 to 330 or from 440 
to 660), we are multiplying the the frequency by 1.5 (or 3/2).  Since this was also true for the C 
and G (and since all the notes seem to relate to each other in a very similar way), we can 
generalize and say that if you multiply the frequency of a note by 1.5, you go up a fifth. 

So from these first two examples we see that if we look at the frequencies of the notes as a 
sequence, the sequence appears to be geometric rather than arithmetic.  That is, to get from one 
note to a higher one, rather than add a certain amount to the frequency, we multiply a certain 
amount to the frequency.  We could also say that this represents an exponential function rather 
than a linear one. 

So what about thirds?  When we went from A to C# we increased our frequency by 25%, so it 
can be said that if you multiply the frequency by 1.25 (or 5/4) you go up a third. 

Now you can create the entire scale, from the frequencies we know.  Imagine that we're going to 
design a synthesizer, and we need to know all the frequencies to assign to the notes.  Get your 
Circle of Fifths handy, so you can have a quick reference to the triads. 

Let's say that the frequency of C is c Hz.  Later on when we figure out exactly what it is, we'll 
just plug in a value for c.  We're going to find the frequencies of all the notes between c and 2c 
Hz (both of which are C's).  A fun exercise for a class is to split into groups and come up with 
the frequencies separately.  So here goes: 

• Since G is a fifth above, the frequency of G must be 1.5c Hz. 
• Likewise, since E is the third of C, the frequency of E is 1.25c Hz. 
• B can be described as the fifth of E or the third of G; either way, you get 1.5×1.25c = 

1.875c (or 15c/8) Hz.   
• The fifth of G is D, so the frequency of D is 1.5×1.5c Hz = 2.25c Hz.  That D is too high, 

so we need to drop down an octave by cutting the frequency in half:  so D is 1.125c, or 
9c/8 Hz. 

• Since C is a fifth above F, then multiplying the frequency of F by 1.5 should get you 2c.  
So then F must be 2c/1.5 = 4c/3 ≈ 1.333c Hz. 

• Likewise, since C is the third of Ab (aka G#), we can calculate G# to be 2c/1.25 = 8c/5 = 
1.6c Hz. 

• Similarly, since G is the third of Eb (aka D#), we can calculate D# to be 1.5c/1.25 = 6c/5 
= 1.2c Hz. 

• Since F is a fifth above Bb, we can calculate Bb from F like we did F from C.  So Bb = 
4c/3 / 1.5 = 8c/9.  Since that particular Bb is below our low C, we'll double the frequency 
to raise it an octave, and get 16c/9 ≈ 1.778c. 

• A is the third of F, so the frequency of A is 1.25×4c/3 = 5c/3 Hz. 
• Since F is the third of C#, we can calculate C# to be (4c/3)/(5/4) = 16c/15 ≈ 1.067c Hz. 
• And finally, F# is the third of D, so the frequency of F# is 1.25×9c/8 = 45c/32 ≈ 1.406c 

Hz. 



So here's a summary of the frequencies that we came up with: 

 

You can extrapolate to notes outside of this interval by finding the note with the same name and 
multiplying or dividing the frequencies by two. 

But Then...It Doesn't Work 

The above example is just one way of figuring out the frequencies of the various notes.  If 
several groups do this exercise at once, it will be very surprising if they all come up with the 
same answers, since there are lots of different frequencies that you can calculate that follow 
some of the rules.  Unfortunately, there is no way to get frequencies that will follow all of the 
rules; the constraints that we have placed on our problem here make it impossible to find a 
solution.   



Let's look for a second at our notes:  they're all increasing in frequency, which is good, but they 
don't seem to be increasing very uniformly.  This keyboard might sound OK if I'm playing 
something in the key of C, but it's going to sound lousy in other keys.  For example, let's say that 
we look at the interval from E to G#.  We know (once we check out the circle of fifths) that this 
is a third, so the ratio of the frequencies should be 1.25.  But if we multiply 1.25c by 1.25, our 
answer is 1.5625c, which is not at all what we have for G# above.  Both times we followed our 
rules, but the answers are quite different.  If we played notes with frequencies of 1.25c and 1.6c 
(regardless of the value of c) as we have in our table above, the interval wouldn't sound like a 
third.  This is not the only problem with our model above; there are lots of them. 

An astute student might look at the circle of fifths and realize that if you go all the way around 
the circle, you will be multiplying your initial frequency by 1.5^12, which is 129.746.  Since 
going around the circle puts you on the same note as when you started, the ratio of your new 
frequency to your original frequency should be a power of 2.  129.746 is very close to 2^7 = 128, 
but it's not equal.  So even before we began our calculations we could have noticed that 
something was amiss. 

So What Does All This Mean? 

What all this means is that there was something wrong with our initial problem.  Let's look at 
what we're trying to do here: 

1. We want to come up with a sequence of notes that have consistent relationships.  In other 
words, no matter what note I start with, I should be able to take its frequency and 
calculate the frequency of any other note.  The notes should not center around any 
particular key, but should work equally well for all keys. 

2. The frequency of two notes that are an octave apart should have a ratio of 2:1. 
3. The frequency of two notes that are a fifth apart should have a ratio of 1.5:1. 
4. The frequency of two notes that are a third apart should have a ratio of 1.25:1. 

So the model that we came up with above seems to follow rule #2 well enough, since we had 
only one octave to deal with.  Unfortunately, we saw that it doesn't follow rules #3 or #4 for all 
notes, and as a matter of fact, we saw from our examination of the circle of fifths that it can't 
follow #2 and #3 at the same time.  So let's set aside rules #3 and #4 for now and just concentrate 
on rules #1 and #2.  We noticed earlier that if we look at the frequencies of the notes as a 
sequence, the sequence is geometric.  So we have a geometric sequence, and every twelve notes 
the frequency is doubled.  If you'd prefer to talk functions rather than sequences, then what we 
have is an exponential function.  There's a pretty good way to show this graphically:  take the 
frequencies that we came up with above (or whatever frequencies your class comes up with) and 
extrapolate to the entire 88-key piano keyboard.  You do this by knowing that the low A on a 
piano keyboard is 27.5 Hz, and starting from there.  This is not a bad exercise for users of Excel.  
The resulting graph looks like this, and if your students have seen exponential functions recently, 
they should recognize this as being a pretty good approximation to an exponential function, but 
with some bumps in it (the bumps are more visible at the right side of the graph, where the 
frequencies are higher). 
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So let's figure out how to make the notes on our keyboard a nice, smooth geometric sequence. 

A geometric sequence follows the pattern a×b^n for n = 1, 2, 3, ... 

If every twelve notes the frequency is doubled, then 2[a×b] = a×b^13, which means that b^12 = 
2.  That means that if we multiply a frequency by the twelfth root of 2, then we get the next 
note.  Let's look at what that looks like in the context of our prior example: 

 

So what this means is that in order to meet the first two rules stated above, we have to be 
satisfied with an approximation of the next two rules.  In this sequence, the ratio of frequencies 
of two notes that are a fifth apart is about 1.498, rather than 1.5.  And the ratio of frequencies of 
two notes that are a third apart is about 1.26, rather than 1.25.   

The Equal Tempered Scale 

This "approximation" to perfect harmonics is called the "equal tempered scale," and it was 
developed so that keyboard instruments such as the piano could play equally well in any key.  
Unfortunately, for some musicians with finicky ears, it could also be described as the piano 
playing equally badly in any key.  Unlike other instruments (such as the violin, viola, or even the 
guitar), the piano cannot play "in between" the notes, and cannot adjust the notes from one key to 



the other.  So equal temperament is really the best you can get for the piano, as long as you stick 
to the traditional, 12-tone scale.  There are other scales with more tones that have been 
suggested, but Western music in particular seems quite stuck to the 12-tone scale. 

By the way, once you've "tempered" the scale, if you graph the frequencies of the 88-key piano 
keyboard, you get a much smoother function than we did in the example above.  This time, the 
graph looks like this. 

Student Work 

When I have taught this lesson, I had the students first come up with some major triads (before I 
passed out the circle of fifths).  But the major part of the students' work was in the creation of the 
frequencies.  I had them work in groups to determine what all twelve frequencies would be (as 
was done above).  Depending on the sophistication level of the student, they can come up with 
the ratios, as we did above (always keeping the variable c as part of the frequency), or they can 
come up with the actual frequencies themselves.  When doing actual frequencies, it's good to use 
the notes between A and A, since the frequencies of A are nice, round numbers:  55, 110, 220, 
440, 880, etc. 

I had them do two presentations:  the first one illustrated the frequencies.  The illustrations had to 
be clear and reasonable, and the students had to be able to back up (show how they got) each 
frequency.  After comparing different "right" answers and finding that we could get wildly 
different answers depending on what method we used, they had to go back to the drawing board.  
As a class we determined that we had to scrap the ratios of 1.25 for a third and 1.5 for a fifth, and 
that the frequencies had to have the form of an exponential function.  The students had to figure 
out what the ratio was between the steps, and then illustrate their findings again.  This time, there 
was such a thing as a right answer. 

Helpful Links 

Here are some resources on the internet that have very helpful information.  The last two links 
are to the RUSMP home page (where I delivered this presentation) and my home page. 

Piano Tuning Math 
Math and the Piano, from Dr. Math 
Mathematics and Music  
The Circle of Fifths (from Rice Connexions) 
Sound, Physics, and Music (from Rice Connexions) 
The Mathematics of Piano Tuning (from American Mathematical Society) 
Just vs. Equal Temperament 

Rice University School Math Project 
My home page 
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