The Language of Mathematics

Stanley Chang
Wellesley College

Outline of Talk

1. Language of Mathematics
2. Propositional Calculus, zeroth-order logic
3. Predicate Calculus, first-order logic
4. Applications to Mathematics
5. Institute for Mathematics and Computer Sciences (IMACS)

Ingredients of Mathematics

1. Language
2. Boolean nature of sentences
3. Axioms of Mathematics
(a) A set is a collection of objects called elements.
(b) Algebra: For any real x, we have $x+0=x$.
(c) Geometry: A line can be extended arbitrarily.

The Boolean nature of sentences consists of a function

$$
V:\{\text { absolute sentences }\} \rightarrow\{\mathrm{T}, \mathrm{~F}\}
$$

V ("There are infinitely many primes." $)=\mathrm{T}$
V ("Every angle can be trisected." $)=\mathrm{F}$
$V($ Goldbach's conjecture $)=$???
V ("There is organic material on Neptune." $=$???
V ("It is sinful to covet your neighbor's wife.") = ND

The Boolean nature of sentences does not apply to:

1. Interjections: "Eeeek!"
2. Interrogatives: "Don't you want me, baby?"
3. Imperatives: "Don't mess with Texas."
4. Jussives:"May a plague strike your house."

Constructing compound sentences

1. Negation: $\neg P$
2. Conjunction: $P \wedge Q$
3. Disjunction: $\quad P \vee Q$
4. Implication: $\quad P \Rightarrow Q$
5. Biconditional: $P \Leftrightarrow Q$

Translating Sentences

Anne is beautiful but I am not beautiful.

$$
P \wedge Q
$$

I will pass chemistry or I will pass mathematics.

$$
P \vee Q
$$

I will pass chemistry or I will pass mathematics, but not both.

$$
(P \vee Q) \wedge \neg(P \wedge Q)
$$

Either you will pass the course or you will fail the course.

$$
P \vee \neg P
$$

Translating implications and biconditionals

$P=$ "you are very lucky", $Q=$ "you will win the lottery"

You will win the lottery if you are very lucky.

$$
P \Rightarrow Q
$$

You will win the lottery only if you are very lucky.

$$
Q \Rightarrow P
$$

You will win the lottery if and only if you are very lucky.

$$
P \Leftrightarrow Q
$$

Truth table for basic binary operations

P	Q	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	F	T	T	F
F	F	F	F	T	T

Provide the truth table for $(P \vee \neg Q) \Rightarrow P$

P	Q	$\neg Q$	$P \vee \neg Q$	$(P \vee \neg Q) \Rightarrow P$
T	T	F	T	T
T	F	T	T	T
F	T	F	F	T
F	F	T	T	F

Tautologies and Contradictions

P	$\neg P$	$P \vee \neg P$	$P \wedge \neg P$
T	F	T	F
F	T	T	F

Yet another tautology

P	Q	$P \wedge Q$	$(P \wedge Q) \Rightarrow P$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T

Manufacturing Tautologies

P	Q	$\neg(P \wedge Q)$	$\neg P \vee \neg Q$
T	T	F	F
T	F	T	T
F	T	T	T
F	F	T	T

Result:

$$
\neg(P \wedge Q) \Leftrightarrow(\neg P \vee \neg Q)
$$

is a tautology!

DeMorgan's Laws of Negation

$$
\begin{aligned}
& \neg(P \wedge Q) \Leftrightarrow(\neg P \vee \neg Q) \\
& \neg(P \vee Q) \Leftrightarrow(\neg P \wedge \neg Q) \\
& \neg(P \Rightarrow Q) \Leftrightarrow(P \wedge \neg Q)
\end{aligned}
$$

The Contrapositive

P	Q	$P \Rightarrow Q$	$\neg Q \Rightarrow \neg P$	$(P \Rightarrow Q) \Leftrightarrow(\neg Q \Rightarrow \neg P)$
T	T	T	T	T
T	F	F	F	T
F	T	T	T	T
F	F	T	T	T

The Limitations of Propositional Calculus

$P(x, y)$ means " x loves $y . "$
$\neg P(x, y)$ means " x does not love y."

We can assert the following:

P (Romeo, Juliet)
$\neg P($ Tom Cruise, Nicole Kidman)
$P($ Richard, Mickey Mouse)

Consider the sentence "Everyone loves me."

P (Anne, me)	P (Joanna, me)	P (Richard, me)
P (Mickey, me)	$\mathrm{P}($ Hillary Clinton, me)	$\mathrm{P}($ LL Cool J, me $)$
P (Monica Lewinsky, me)	P (Roseanne, me)	P (Idi Amin, me)
P (Boy George, me)	P (Roy Orbison, me)	P (Connie Chung, me)
P (Kermit the Frog, me)	P (Dennis Rodman, me)	P (Stephen King, me)
\ldots	\ldots	\ldots

The sentence "Everyone loves me" is symbolically:

$$
\forall x[P(x, \mathrm{me})]
$$

which reads "For all x, x loves me."

Better yet, if \mathcal{U} is the set of all people, write

$$
\forall x \in \mathcal{U}[P(x, \mathrm{me})]
$$

The symbol \forall is called the universal quantifier.

Negating the Universal

We want the negation of $\quad \forall x \in \mathcal{U}[P(x$, me $)]$.
Attempt: $\forall x \in \mathcal{U} \quad[\neg P(x, \mathrm{me})]$
Translation: "No one loves me."
We want: "Someone does not love me" or "There exists someone who does not love me."

The Existential Quantifier

The sentence
"There exists someone who does not love me"
can be written

$$
\exists x \in \mathcal{U} \quad[\neg P(x, \mathrm{me})]
$$

The symbol \exists is called the existential quantifier.

Some Tautologies
$\neg\{\forall x \in \mathcal{U} \quad[P(x$, me $)]\} \Leftrightarrow\{\exists x \in \mathcal{U} \quad[\neg P(x$, me $)]\}$
$\neg\{$ Everyone loves me $\} \Leftrightarrow\{$ Someone does not love me $\}$
$\neg\{\exists x \in \mathcal{U} \quad[P(x, \mathrm{me})]\} \Leftrightarrow\{\forall x \in \mathcal{U} \quad[\neg P(x, \mathrm{me})]\}$
$\neg\{$ Someone loves me $\} \Leftrightarrow\{$ No one loves me $\}$
$\{$ No one loves me $\} \Rightarrow \neg\{$ Everyone loves me $\}$

More Complicated Examples

Translate "Everyone is loved by someone."

Let x be the existential, and y the universal.
The ingredients are $\forall y \in \mathcal{U}, \exists x \in \mathcal{U}, P(x, y)$.
Which is right?

1. $\exists x \in \mathcal{U} \forall y \in \mathcal{U} \quad[P(x, y)]$.
2. $\forall y \in \mathcal{U} \exists x \in \mathcal{U} \quad[P(x, y)]$.

The Importance of Order

Option 1: $\exists x \in \mathcal{U} \forall y \in \mathcal{U} \quad[P(x, y)]$

This means:"Someone loves everyone."

Option 2: $\forall y \in \mathcal{U} \exists x \in \mathcal{U} \quad[P(x, y)]$

This means:"Everyone is loved by someone."

Negating First-Order Sentences

Find the negation of $\forall y \in \mathcal{U} \exists x \in \mathcal{U} \quad[P(x, y)]$.

Solution: $\neg\{\forall y \in \mathcal{U} \exists x \in \mathcal{U}[P(x, y)]\}$

$$
\begin{aligned}
& \Leftrightarrow \exists y \in \mathcal{U} \neg\{\exists x \in \mathcal{U}[P(x, y)]\} \\
& \Leftrightarrow \exists y \in \mathcal{U} \forall x \in \mathcal{U}[\neg P(x, y)]
\end{aligned}
$$

Translation: There is someone who is loved by no one.

A confused Glinda

1. "Are you a good witch or a bad witch?"
2. "Only bad witches are ugly."
3. "I'm a little muddled."

Question: Did Glinda insult Dorothy?

Reinterpret Glinda's sentence

Only bad witches are ugly.
Reinterpret: A witch is ugly only if $s /$ he is bad.

Let C be the collection of all creatures,
W be the subset of witches,
B be the subset of bad creatures,
U be the subset of ugly creatures.
$(\forall P \in C)[((P \in W) \wedge(P \in U)) \Rightarrow(P \in B)]$

A Venn diagram

Negating Glinda's sentence
Only bad witches are ugly.
$(\forall P \in C)[((P \in W) \wedge(P \in U)) \Rightarrow(P \in B)]$
$(\exists P \in C)[((P \in W) \wedge(P \in U)) \wedge(P \notin B)]$
There is an ugly witch who is not bad.

Mathematical Examples

I. The integer n is a perfect square.

Solution: $\exists m \in \mathbb{Z}\left[m^{2}=n\right]$
II. The number 2 is not the square of any integer.

$$
\begin{gathered}
\text { Solution: } \neg\left\{\exists m \in \mathbb{Z}\left[m^{2}=2\right]\right\} \\
\Leftrightarrow \forall m \in \mathbb{Z}\left[m^{2} \neq 2\right]
\end{gathered}
$$

More Mathematical Examples

III. p is a prime number.

Solution: First write " p is a composite number"

$$
\exists m \in \mathcal{P} \exists n \in \mathcal{P}[m n=p],
$$

where $\mathcal{P}=\{2,3,4, \ldots\}$. Negate this sentence:

$$
\begin{aligned}
& \neg\{\exists m \in \mathcal{P} \exists n \in \mathcal{P}[m n=p]\} \\
& \Leftrightarrow \forall m \in \mathcal{P} \neg\{\exists n \in \mathcal{P}[m n=p]\} \\
& \Leftrightarrow \forall m \in \mathcal{P} \forall n \in \mathcal{P}[m n \neq p]
\end{aligned}
$$

Express these sentences symbolically

1. The integer n is odd.
2. There is no largest real number.
3. The quantity $\lim _{x \rightarrow \infty} \cos x$ does not exist.

The Institute for Mathematics and Computer Science (IMACS)
www.eimacs.org

