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Question
What math problem has had the greatest impact on society and
the production of new mathematics?

Candidate: Fermat’s Last Theorem

an + bn = cn

has no integer solutions for integer n ≥ 3
No, it has the largest number of incorrect proofs.

Note: Fermat’s Last Theorem is so well-known and respected
because its proof is so difficult, not because of its influence or
importance in mathematics.

Note: The mathematicians trap: importance of result is directly
proportional to difficulty of proof. Consequence — when writing a
research paper choose the difficult proof, when writing a book
choose the simple proof.
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Answer
Isoperimetric Problem:

Determine from all simple closed planar curves of the same
perimeter, the one that encloses the largest area.

Even the uninitiated correctly conjecture that the solution is a
circle.

Note: It also has had a large number of incorrect solutions, in
particular, necessity used as sufficiency.

Note: It is clearly the world’s best known mathematics problem;
and it is unique among math problems in that ancient and
medieval poets and historians routinely incorporated it into their
writings. Perhaps this is because the problem is so easy to state
and understand and has interesting applications.
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Remarks associated with the Isoperimetric Problem

The issue of the relationship between perimeter and area was
important to the early Greeks. It was of particular importance
for land management and led to clever cheating.

400 BC Thucydides (historian and public official), and others,
measured the size of a city by the time that it took to
circumnavigate the city.

400 AD Proclus (mathematical historian)
greatly mocked his Greek forefathers for “measuring the size
of a city by the length of its walls, and the size of an island by
the time it took to sail around it.”

Ancient Greek philosophers believed that the creator solved
the isoperimetric problem in 3-D when He/She created the
Earth.
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Zenodorus (Greek mathematician who lived 200–120 BC)

1 wrote work entitled On Isometric Figures

2 work lost, but referenced by Pappus and Theon 300 years
later

3 studied figures with equal perimeters and different shapes

4 proved (stated for sure)

the circle has a greater area than the regular polygon of the
same perimeter
of two regular polygons of the same perimeter, the one with
the greater number of angles has the greatest area

5 conjectured (without attempting a proof)

in 2-D the circle solves the Isoperimetric Problem
in 3-D the sphere solves the Isoperimetric Problem
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Queen Dido and the Isoperimetric Problem

Virgil the Roman poet (29–19 BC) in the epic Latin poem The
Aeneid writes of the Tyrian Princess, Dido whose life was in danger
and therefore fled her homeland by ship with her wealth and
entourage. They crossed the Mediterranean sea and arrived on the
shores of what today is modern Tunisia in North Africa. Dido spied
a spot that would be perfect for her and her small group. The
natives were not too happy about newcomers, but Dido was able
to make a deal with their king, Japon. She promised him a fair
amount of money for as much land as she could mark out with a
bull’s hide. The king thought that he was getting the better end of
the deal, but soon realized that the woman he was dealing with
was much smarter than he had expected.
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The trick that she employed was to have her people cut the hide
up into very thin strips which they sewed together into one long
string. They then took the seashore as one edge for the piece of
land and laid out the string in the form of a semi-circle, giving
them a much bigger piece of land than the king had thought
possible. They called their community Carthage, which translates
in their native Phonician to “New Land” in memory of their Tyrian
origin. King Japon was very impressed with Dido’s mathematical
intelligence and asked her to marry him. She refused; so he had a
university built, hoping to attract a future wife of similar
mathematical talent.
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REMARK: This is perhaps the first formal documentation of the
1960’s “Tune In, Turn On, Drop Out” counterculture icon and
Harvard Professor Timothy Leary’s1 adage—“intelligence is an
aphrodisiac”.

The Aeneid continues telling us that as Queen of Carthage, Dido
received Trojan exiles with hospitality. The Trojan prince Aeneas,
protagonist of the Aeneid, met her on his way from Troy to
Livinium (now Rome). She fell in love with him, and when he
spurned her love and left to fulfill his destiny she committed
suicide.

REMARK: “mathematical intelligence is neither necessary nor
sufficient to deal with the trials and tribulations of the heart”.

1fired from Harvard for allowing undergraduate students to engage in his
experiments on effective use of drugs
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Dido Purchases Land for the Foundation of Carthage. Engraving
by Matthäus Merian the Elder, in Historiche Chronica, Frankfurt
a.M., 1630. Dido’s people cut the hide of an ox into thin strips
and try to enclose a maximal domain.
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Application of the Dido Maximum Principle

Medieval map of Cologne
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Yet Another Application of

the Dido Maximum Principle

Medieval map of Paris
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1691 — Bitter argument between Johann and Jakob Bernoulli
concerning Johann’s incorrect solution of the isoperimetric
problem.

1744 — Euler builds multiplier theory to solve the
isoperimetric problem. He realizes that he has only
demonstrated that if a solution exists, then it must be the
circle, i.e., multiplier theory is necessary, but not sufficient for
a solution to exist.
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As a consequence of multiplier theory Euler observes that the
following two problems are equivalent (they have the same
solutions).

The isoperimetric problem: Determine from all simple closed
planar curves that have the same perimeter, the one with the
largest area.

The iso-area problem: Determine from all simple closed planar
curves that enclose the same area, the one with the smallest
perimeter.
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1838 — Jacob Steiner constructs a geometric proof for the
isoperimetric problem. This proof gained great visibility in the
mathematics community and has been called a model of
mathematical ingenuity by math historians.

Note: I find it interesting that most presentations of Steiner’s
proof in the contemporary elementary literature are sloppy and/or
flawed.
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Convex Set S

Convex Not Convex

Definition

For x , y ∈ S αx + (1− α)y ∈ S ∀ α ∈ [0, 1].
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The Steiner 3 Step Proof

Step 1 The curve must be convex:

Step 2 Perimeter bisector divides the curve into equal areas and
we can therefore symmetrize across the bisector
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Preliminary Results from Geometry
needed to complete Steiner’s Proof

Lemma 1 (Thales Theorem 600 BC) If AC is a diameter, then the
angle at B is a right angle.

Lemma 2 (Converse to Thales Theorem) A right triangle’s
hypotenuse is a diameter of its circumcircle.

Lemma 3 Of all possible triangles with two sides of specified
lengths the triangle of maximum area is the right triangle.
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The Steiner 3 Step Proof continued
“STEINER SYMMETRIZATION”

Step 3 All inscribed angles determined by the perimeter bisector
must be right angles.

Proof of Steiner’s Theorem:

If angle α is not 90◦, then according to Lemma 3 we can increase
the area without increasing the perimeter. The proof that the
solution of the isoperimetric problem is the circle now follows from
the converse to Thales Theorem (Lemma 2), since every point on
the curve will determine a radius.
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Peter Dirichlet: “Jakob, you have an incomplete proof. You have
assumed that a solution exists.”

Jakob Steiner: “Peter, I have a valid proof and I’m not going to let
you rain on my parade, please go away.”

Remark: It is remarkable that the many proofs up to this time
were either incomplete, incorrect, or implicitly used necessity as
sufficiency.
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1879 — Weierstrass gives first complete proof in his university
lectures.

Note: Weierstrass promoted cleanliness of statement, rigor of
proof, and sufficiency theory. He was a brilliant mathematician,
taught secondary school, and published his first significant paper
when he was 40 years old.
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Summary: Impact on Contemporary
Mathematics

The isoperimetric problem (embedded in controversy) lead to the
early calculus of variations. Key players were Fermat, Newton,
Johann Bernoulli, and Jakob Bernoulli.

The early calculus of variations led to the golden era of
mathematics that we recognize as the 18th and 19th centuries.
Essentially all mathematical names that we recognize from that
time period attempted work in the calculus of variations.
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Optimization: The Cradle of Contemporary Mathematics

Optimization problems are relatively easy to understand when
compared with problems in many other branches of mathematics.
Controversy invariably leads to interest. Hence, important
optimization problems embedded in some controversy have played
major roles in motivating and promoting mathematical activity.
Mathematical, indeed scientific, activity can be motivated by many
factors, and not all are removed from human emotion, as some
might have us believe.
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PART 2

Fermat’s Basic Optimization Principle
(The world’s first optimization principle)

Abstracting the Variational Equality
(The world’s second mathematical optimization principle).
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Fermat’s Basic Optimization Principle (1628)

If x∗ minimizes f : R→ R, then f ′(x∗) = 0.

Note: This principle preceeds the formal definition of the
derivative.

Remark: In contrast to Fermat’s Last Theorem, we call this
Fermat’s First Theorem because:

It is so easy to prove

It is the most useful and (most used) theorem among all his
theorems (conjectures)
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Some interesting historical information on Fermat

Lived 1601–1665

Born and educated and functioned as a lawyer and legal
official in Toulouse, France

Did mathematics for recreation and considered it a hobby. He
dabbled and rarely produced proofs. As such he was sloppy
and chose not to include detail or polish his work. Much of his
work required “a fill in the blanks” activity as is characterized
by his last theorem. He did not publish and communicated his
work in the form of letters to important people.

Directly and naively engaged in controversy with prominent
mathematicians of the times and in particular with the
powerful Descartes.
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Conceived and applied the differential calculus in a 1628
unpublished work entitled Minima and Maxima and the
tangent to a curve. Note that this was 15 years before
Newton was born and 18 years before Leibniz was born.

Ten years later in 1638 he made his work semi-public in a
letter to Descartes. The work stepped strongly on the toes of
work that Descartes was doing on tangents to curves.

When asked for an official evaluation of Descartes work he
wrote “he is groping around, in the shadows.”

Descartes responded with the public statement “Fermat is
inadequate as a mathematician and as a thinker.” This
damaged Fermat’s reputation.

In prominent competition between Descartes and Fermat on
the notion of a tangent to a curve, Fermat won and Descartes
lost.

After the dust settles Descartes writes to Fermat “your work
on tangents is very good, if you had explained it well from the
onset, I would not have had to criticize it or you.”
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Fermat had little to no interest in physical applications of
mathematics, he just loved the math. This is in strong
contrast to Newton who did the mathematics for his love of
physical applications. Even his notation and terminology
showed this.

1642 Herigone in Cursus Mathematicus adds a supplement
containing Fermat’s work on minima and maxima and
tangents to curves.

1679 Fourteen years after his death Fermat’s collected works
were published (son played a major role) and included nine
papers on minima and maxima.

E.T. Bell in Men of Mathematics calls Fermat “the prince of
amateurs.”
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Supplementary Remark on the development of the calculus

The derivative and the integral were known for many years before
Newton or Leibniz are said to have invented the calculus. The
primary component in the calculus is what we call today the
fundamental theorem of calculus. It was first stated in 1669 by
Issac Barrow, a teacher of Newton. Newton and Leibniz built a
rather complete understanding of the calculus sometime between
the years 1670 and 1700. Formal definition, rigorous statement,
and rigorous proof was made by Cauchy in 1823. The following
quote from E.T. Bell’s Men of Mathematics is critical to the
development of new mathematics:

“If the inventors of the calculus had had to worry about
detail and formality of definition and proof it would never
have been invented.”
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PART 3

The application that never was and could and should have been
made by Euler or Lagrange: Identification of convexity and the
early and proper solution of the isoperimetric problem.
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Convex Function J

Convex Not Convex

Definition

J(αx1 + (1− α)x2) ≤ αJ(x1) + (1− α)J(x2) ∀ α ∈ [0, 1].
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An Important Observation

Theorem 1
For a differentiable convex function the derivative equal to zero is
both necessary and sufficient for a point to be a minimizer.
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Proof
Consider y and y∗ in domain of J and J ′(y∗) = 0. Then,

0 = J ′(y∗)(y − y∗) = lim
t↓0

[
J(y∗ + t(y − y∗))− J(y∗)

t

]
= lim

t↓0

[
J((1− t)y∗ + ty)− J(y∗)

t

]
By convexity ≤ lim

t↓0

[
(1− t)J(y∗) + tJ(y)− J(y∗)

t

]
= J(y)− J(y∗)

Therefore,
J(y∗) ≤ J(y) for all y .
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The application that could have been made by Euler or
Lagrange.

Solution of the Isoperimetric Problem using convexity
(we work with the semi-circle as Queen Dido did)

Iso-Perimeter Problem Iso-Area Problem

max J(y) =

∫ a

−a
y(x)dx min J(y) =

∫ a

−a

√
1 + y ′(x)2dx

subject to subject to

y(−a) = y(a) = 0 y(−a) = y(a) = 0∫ a

−a

√
1 + y ′(x)2dx = `

∫ a

−a
y(x)dx = A

y ∈ C 1[−a, a] y ∈ C 1[−a, a].
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Equivalence Result

Iso-Perimeter Iso-Area

max A(y) min `(y)

(IP) S.T. `(y) = ` (IA) S.T. A(y) = A

B(y) = 0 B(y) = 0.

Proposition
(IP)⇔(IA)
(Have same solutions for compatible choices of ` and A)
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Proof ⇐ (Zhengzheng Feng and Chenbo Li) on 2008 CAAM 560
midterm exam)

Let yA be a solution of (IA).
If yA is not a solution of (IP) with ` = `(yA) then ∃ yp s.t.

A(yp) > A(yA) and `(yp) = `(yA).

Observe that by the monotonicity of the integral A(αy) and `(αy)
are monotone increasing in α.
Choose α < 1 so that A(αyp) = A(yA)

then `(αyp) < `(yA).
Contradiction since yA solves (IA).

Proof of ⇒ is similar.

Remark: The proofs in the literature work with the circle.
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Theorem 2 Consider the Iso-Area Problem. Let y be a feasible

function:

y(−a) = y(a) = 0 and
∫ a

−a
y(x)dx = A.

Let η be an admissible function:

η(−a) = η(a) = 0 and
∫ a

−a
η(x)dx = 0.

Consider φ(t) = J(y + tη)
where J(y) =

∫ a
−a

√
1 + y ′(x)2dx .

Then φ : IR → IR is convex and φ(0) = J(y).

Moreover, φ′(0) = 0, for all admissible η, is both a necessary and
sufficient condition for y to solve the iso-area problem.

Proof: The proof is the same as the proof of Theorem 1.
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We now use our Theorem 2 to show that the semi-circle

y(x) =
√

a2 − x2 for − a ≤ x ≤ a

solves the Iso-Area problem for the choice A = π
2 a2 and therefore

solves the Iso-Perimetric problem for the choice ` = πa.
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For an admissible variation, i.e.,

η(a) = η(−a) = 0,

∫ a

−a
η(x)dx = 0.

Consider φ(t) = J(y + tη)
where

J(y) =

∫ a

−a

√
1 + y ′(x)2dx .

Calculation gives

φ′(0) =

∫ a

−a

y ′(x)η′(x)√
1 + y ′(x)2

= −
∫ a

−a
xη′(x)dx

= −xη(x)

∣∣∣∣a
−a

+1/a

∫ a

−a
η(x)dx

= 0

Hence the semi-circle solves the iso-area problem and in turn the
equivalent iso-perimetric problem.
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Remark: We have just solved the world famous isoperimetric
problem using elementary tools known to Euler and certainly
Lagrange. Of course we had to realize that convexity gave
sufficiency.
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A change of pace:

Is this an application of the iso-perimeter or the iso-area principle?

Medieval map of Cologne

Was area or length the design parameter?
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Medieval City Planner:

We can afford to build a wall of length `, so let’s build it in the
form of a semi-circle and maximize area

or

We need a city of area A, so lets build the wall in the form of a
semi-circle to minimize cost

Vote for one.
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PART 4

SUMMARY
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Dear Professors Euler and Lagrange:
You are two of the greatest mathematicians of all time and
certainly the two greatest mathematicians of the eighteen century.
Therefore my comments below are made with great respect and
even greater humility. I do hope that you will find them informative
and perhaps even amusing. I will restrict my comments to the
early calculus of variations. To start with, I compliment both of
you for seeing the need for theory for a general class of problems,
you seem to be among the first in the calculus of variations. In this
work, Leonhard, you were bold and creative, but rather sloppy in
proof. I find it interesting that throughout your life you cautioned
others about being cautious when working with infinite processes,
but failed to observe it in much of your own work. However, these
flaws do not really bother me, and I will tell you why. In these
instances you had deficient proofs of correct results. This is much
better than having a flawed proof of an incorrect result. It is
important that you were always correct in your statements.
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Joseph, in addition to all your great original work you functioned,
for actually much of your life, as the closer, the polisher, the one
who made everything clean, clear , and correct. In 1777 you said in
a letter to Laplace “I enjoy the works of others much more than
my own, with which I am always dissatisfied”. You served in this
capacity with the calculus. You were the conduit between Newton
and Leibniz, the originators, and Cauchy the final polisher of the
calculus.

45 / 48



Now let’s turn to the legendary isoperimetric problem. Leonhard, I
am told that you memorized Virgil’s Aeneid from cover to cover
and that you could tell people the first and last word on every
page. This is hard to believe, but even if partially true it shows
that Queen Dido’s isoperimetric problem was deeply embedded in
your subconscious. So you built multiplier theory to solve this
problem and realized that you only had necessity, i.e. if the
problem had a solution it had to be the circle. This is good
because so many mathematicians of the time failed to make real
distinctions between necessity and sufficiency. However, the irony
is that in this case you really did have sufficiency. All you had to
do was be aware of convexity and that in its presence necessity
becomes sufficiency in both the variational equality and the
multiplier theory that you built.
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However, this observation only applies to the iso-area problem. But
that would not be a problem since you are the one that pointed
out that multiplier theory for the isoperimetric problem and the
iso-area problem is the same — if the circle solves one it solves the
other. Here Joseph I have to look at you. You were the closer, you
had all the understanding plus the demonstrated technique for
doing exactly this. Was convexity not known to you? A simple
picture would have lead to the conjecture. Of course you could
both say why do I not look at Fermat, after all he was the one who
spent all the time on minimization in one dimension, and there for
sure a picture should have led to the result. I thought of that, and
I think that Fermat, the loose cannon that he was, may have
thought of it and failed to write it down or write it up. So
Leonhard and Joseph you were just an eyelash, a blink of an eye,
an epsilon away from giving the world its first valid proof that the
circle solves the isoperimetric problem. But, no we had to wait a
hundred and fifty years to see the first proof. I would have much
preferred to see a proof that used the very tools that you both
embraced and developed.
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Indeed Joseph it made me very happy to read that, of all your
great work, you considered your early work in the calculus of
variations, thought out when you were nineteen, your masterpiece.
You said that it was by means of this calculus that you unified
mechanics. This unification prompted Hamilton to say “you made
of mechanics a scientific poem”.

Thank you for giving the world so much and giving me such
interesting material to think about and to talk about.

Regards,

Richard Tapia
University Professor
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