RUSMP/MLI Colloquium

Tropical Mathematics

An Interesting and Useful Variant of Ordinary Arithmetic

June 8, 2005

Tropical Mathematics

A new mathematics

- Starts with a new arithmetic
- Includes polynomials, curves, higher algebra
- Useful in combinatorics, algebraic geometry
- Useful in genetics
- It is fun to do math in a different setting

Why Tropical Mathematics?

- Coined by French mathematicians
- In honor of Imre Simon, a Brazilian mathematician
- The name simply reflects how a few Frenchmen view Brazil

Tropical Arithmetic

- Ordinary arithmetic
 - Real numbers, addition (+) and multiplication (\times)
- Tropical arithmetic
 - $\bullet\,$ Real numbers plus infinity, denoted by $\infty\,$
 - Tropical addition (\oplus)
 - Tropical multiplication (\otimes)

Tropical Addition

 $a \oplus b =$ the minimum of a and b.

• Examples:

$$3 \oplus 5 = 3, \quad 3 \oplus (-5) = -5$$

 $12 \oplus 0 = 0, \quad 0 \oplus (-3) = -3$

- The additive unit is ∞ .
 - $\infty \oplus 3 = 3$
 - $\infty \oplus x = x \oplus \infty = x$ for all x

Tropical Addition Table

\oplus	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	2	2	2	2	2	2
3	1	2	3	3	3	3	3
4	1	2	3	4	4	4	4
5	1	2	3	4	5	5	5
6	1	2	3	4	5	6	6
7	1	2	3	4	5	6	7

Differences

• Subtraction is not always possible.

- The equation $3 \oplus x = 5$ has no solution.
- The equation $3 \oplus x = 1$ has a solution.
- The equation $a \oplus x = \infty$ has no solution if $a \neq \infty$.
- We have to stay away from looking for solutions to equations.

Tropical Multiplication

- $a \otimes b = a + b$
 - Tropical multiplication is the same as ordinary addition.
- Examples:

$$3 \otimes 5 = 8, \quad 3 \otimes (-5) = -2,$$

 $(-1) \otimes 3 = 2, \quad 1 \otimes 13 = 14.$

- The multiplicative unit is 0.
 - $0 \otimes 13 = 13$.
 - $0 \otimes x = x \otimes 0 = x$ for all x.

Tropical Multiplication Table

\otimes	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	7
2	2	3	4	5	6	7	8
3	3	4	5	6	7	8	9
4	4	5	6	7	8	9	10
5	5	6	7	8	9	10	11
6	6	7	8	9	10	11	12

Similarities and Differences

- Commutative laws are valid
- The distributive law still holds.
- $(x \oplus y)^3 = x^3 \oplus y^3$

Linear Functions

Linear Functions

- The graph of $y = \overline{5}$ is a straight line with slope 0.
- The graph of $y = 3 \otimes x$ is a straight line with slope 1.
- The graph of $y = 3 \otimes x \oplus 5$ is a crooked line.
- Notice:

$$3 \otimes x \oplus 5 = \min\{x + 3, 5\}$$
$$= 3 + \min\{x, 2\}$$
$$= 3 \otimes (x \oplus 2)$$

• x = 2 is where the graph bends.

Monomials

• Monomials:

$$x^{2} = x \otimes x = x + x = 2x$$
$$x^{3} = x \otimes x \otimes x = 3x$$
$$x^{p} = p \times x$$

Monomials are linear functions with integer coefficients.

•
$$3 \otimes x^2 = 3 + (2x)$$

• The graph is a line with slope 2.

•
$$4 \otimes x^3 = 3x + 4$$

• The exponent is the slope of the graph.

13

Polynomials

Example 1:

 $p(x) = 2 \otimes x^2 \oplus x \oplus 5$ $= \min\{2x + 2, x, 5\}$

• The graph is a twice bent line.

• The graph bends at x = -2 and x = 5.

• We can show that $p(x) = 2 \otimes [x \oplus (-2)] \otimes [x \oplus 5]$

Polynomials

Example 2:

 $p(x) = x^2 \oplus 3 \otimes x \oplus 2$ $= \min\{2x, x+3, 2\}$

• The graph is a once bent line.

• The graph bends at x = 1

• We can show that
$$p(x) = (x \oplus 1)^2$$

Factorization of Polynomials

- Our two example polynomials factor into linear factors.
- Any tropical polynomial can be expressed in one and only one way as the product of linear factors.
 - Thus the Fundamental Theorem of Algebra remains true in tropical mathematics.

Polynomials in Two Variables

- A monomial represents a linear function.
 - Example: $p(x, y) = 3 \otimes x \otimes y = 3 + x + y$
- A polynomial represents the minimum of one or more linear functions.
 - Example: $p(x, y) = x \oplus y \oplus 1 = \min\{x, y, 1\}$
- The bend points of the graph occur where two or more of the linear functions agree.

Curves

- In ordinary math, the zero set of $x^2 + y^2 1$ is a circle a curve.
- In tropical math, the zero set is replaced with the bend set
 a tropical curve.
- Examples

• 1.
$$p(x,y) = x \oplus y \oplus 1 = \min\{x, y, 1\}$$

- 2. $p(x,y) = x^2 \oplus y^2 \oplus 4 = \min\{2x, 2y, 4\}$
- 3. $p(x,y) = x^2 \oplus y^2 \oplus x \oplus 4 = \min\{2x, 2y, x, 4\}$

The End

