RUSMP/MLI Colloquium

Tropical Mathematics

An Interesting and Useful Variant of Ordinary Arithmetic

June 8, 2005

Tropical Mathematics

A new mathematics

- Starts with a new arithmetic
- Includes polynomials, curves, higher algebra
- Useful in combinatorics, algebraic geometry
- Useful in genetics
- It is fun to do math in a different setting

Why Tropical Mathematics?

- Coined by French mathematicians
- In honor of Imre Simon, a Brazilian mathematician
- The name simply reflects how a few Frenchmen view Brazil

Tropical Arithmetic

- Ordinary arithmetic

Real numbers, addition $(+)$ and multiplication (\times)

- Tropical arithmetic
- Real numbers plus infinity, denoted by ∞
- Tropical addition (\oplus)
- Tropical multiplication (\otimes)

Tropical Addition

$a \oplus b=$ the minimum of a and b.

- Examples:

$$
\begin{aligned}
3 \oplus 5 & =3, \\
& 3 \oplus(-5)=-5 \\
12 \oplus 0 & =0,
\end{aligned} \quad 0 \oplus(-3)=-3
$$

- The additive unit is ∞.
$\infty \oplus 3=3$
$\infty \oplus x=x \oplus \infty=x$ for all x

Tropical Addition Table

\oplus	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	2	2	2	2	2	2
3	1	2	3	3	3	3	3
4	1	2	3	4	4	4	4
5	1	2	3	4	5	5	5
6	1	2	3	4	5	6	6
7	1	2	3	4	5	6	7

Differences

- Subtraction is not always possible.

The equation $3 \oplus x=5$ has no solution.

- The equation $3 \oplus x=1$ has a solution.
- The equation $a \oplus x=\infty$ has no solution if $a \neq \infty$.
- We have to stay away from looking for solutions to equations.

Tropical Multiplication

- $a \otimes b=a+b$

Tropical multiplication is the same as ordinary addition.

- Examples:

$$
\begin{aligned}
3 \otimes 5=8, & 3 \otimes(-5)=-2, \\
(-1) \otimes 3=2, & 1 \otimes 13=14 .
\end{aligned}
$$

- The multiplicative unit is 0 .
- $0 \otimes 13=13$
- $0 \otimes x=x \otimes 0=x$ for all x.

Tropical Multiplication Table

\otimes	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	7
2	2	3	4	5	6	7	8
3	3	4	5	6	7	8	9
4	4	5	6	7	8	9	10
5	5	6	7	8	9	10	11
6	6	7	8	9	10	11	12

Similarities and Differences

- Commutative laws are valid
- The distributive law still holds.
- $(x \oplus y)^{3}=x^{3} \oplus y^{3}$

Linear Functions

Linear Functions

- The graph of $y=5$ is a straight line with slope 0 .
- The graph of $y=3 \otimes x$ is a straight line with slope 1 .
- The graph of $y=3 \otimes x \oplus 5$ is a crooked line.
- Notice:

$$
\begin{aligned}
3 \otimes x \oplus 5 & =\min \{x+3,5\} \\
& =3+\min \{x, 2\} \\
& =3 \otimes(x \oplus 2)
\end{aligned}
$$

- $x=2$ is where the graph bends.

Monomials

- Monomials:

$$
\begin{aligned}
& x^{2}=x \otimes x=x+x=2 x \\
& x^{3}=x \otimes x \otimes x=3 x \\
& x^{p}=p \times x
\end{aligned}
$$

- Monomials are linear functions with integer coefficients.
- $3 \otimes x^{2}=3+(2 x)$
- The graph is a line with slope 2 .
- $4 \otimes x^{3}=3 x+4$
- The graph is a line with slope 3 .
- The exponent is the slope of the graph.

Polynomials

Example 1:

$$
\begin{aligned}
p(x) & =2 \otimes x^{2} \oplus x \oplus 5 \\
& =\min \{2 x+2, x, 5\}
\end{aligned}
$$

- The graph is a twice bent line.
- The graph bends at $x=-2$ and $x=5$.
- We can show that $p(x)=2 \otimes[x \oplus(-2)] \otimes[x \oplus 5]$

Polynomials

Example 2:

$$
\begin{aligned}
p(x) & =x^{2} \oplus 3 \otimes x \oplus 2 \\
& =\min \{2 x, x+3,2\}
\end{aligned}
$$

- The graph is a once bent line.
- The graph bends at $x=1$
- We can show that $p(x)=(x \oplus 1)^{2}$

Factorization of Polynomials

- Our two example polynomials factor into linear factors.

The factors have the form $x \oplus a$, where a is a bend point for the graph.

- Any tropical polynomial can be expressed in one and only one way as the product of linear factors.
- Thus the Fundamental Theorem of Algebra remains true in tropical mathematics.
- The factors are of the form $x \oplus a$, where a is a bend point for the graphs of the function. All such factors occur.

Polynomials in Two Variables

- A monomial represents a linear function.

$$
\text { Example: } p(x, y)=3 \otimes x \otimes y=3+x+y
$$

- A polynomial represents the minimum of one or more linear functions.
- Example: $p(x, y)=x \oplus y \oplus 1=\min \{x, y, 1\}$
- The bend points of the graph occur where two or more of the linear functions agree.

Curves

- In ordinary math, the zero set of $x^{2}+y^{2}-1$ is a circle - a curve.
- In tropical math, the zero set is replaced with the bend set - a tropical curve.
- Examples
- 1. $p(x, y)=x \oplus y \oplus 1=\min \{x, y, 1\}$
- 2. $p(x, y)=x^{2} \oplus y^{2} \oplus 4=\min \{2 x, 2 y, 4\}$
- 3. $p(x, y)=x^{2} \oplus y^{2} \oplus x \oplus 4=\min \{2 x, 2 y, x, 4\}$

The End

Return

Return

Return

