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The scientific process has many components

I experimentation

I modeling

I data collection

I design of experiments

I curve fitting

I parameter estimation

I uncertainty quantification



Uncertainty Quantification

The fundamental result of statistics is:

Uncertainty may be reduced by averaging.



This simple statement applies in a range of applications

a. Given a random sample {x1, x2, . . . , xn},

Average(x̄) = Average(x1)

but

Variance(x̄) =
1

n
Variance(x1)

b. Reconstructing a crystalline sample takes advantage of the
periodic structure and Fourier techniques. For example, x-ray
crystallography begins with as pure a crystal as available.



Thomas Splettstoesser, Heidelberg University



c. Given thousands of images of flash-frozen viruses at random
angles, Wah Chiu (Baylor College of Medicine) has shown
how to reconstruct an individual virus:

1. isolate each virus image
2. cluster the images into 50-60 groups
3. average images within a cluster
4. try to figure out the angle of each cluster
5. use known symmetry to aid reconstruction



Cryo-electron microscope images of P22 virus.





Statistical Uncertainty

I A tool for understanding uncertainty is simulation

I These computer experiments can imitate any “real” process
imagined

I By replication, the accuracy (or, equivalently, the uncertainty)
may be observed



Example 1.

I At some point during the Fall of 2008, you heard the following
poll result:

47% Obama
53% Other

(“Other” may break down as 43% McCain, 10% undecided, ignoring other candidates.)

I A Gallup poll might report their findings based on 1200 phone
interviews

I So a single computer simulation would involve flipping a
biased coin 1200 times, and counting the number of “heads”

I Repeat the simulation a large number of times (1000 here)
and accumulate the results in a frequency chart (histogram)
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I This simulation suggests (visually) that the uncertainty is
about ±3 points

I Now it turns out that it is basically OK to ascribe this same
level of uncertainty to a Gallup poll

I The New York Times “Polling Standards” includes:

UNDERSTANDING THE MARGIN OF SAMPLING ERROR

A typical nationwide telephone poll of 1,000 respondents has a
margin of sampling error of plus or minus three percentage
points. This means that in 19 cases out of 20, overall results
based on such samples will differ by no more than three
percentage points in either direction from what would have
been obtained by seeking out all American adults.



I Examine the
simulation again

I Question: What is
the likelihood
Obama will get
more than 50% of
the vote?

I The visualization
suggests not

I What about the
undecided
voters???
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The Undecideds

I From the simulation point of view, we can “force” an answer
from such individuals

I We would not use the same biased (47%) coin for the
undecideds

I Seems obvious that these folks are truly on the fence:
therefore, 50-50
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I Uncertainty is
about the same

I Obama very likely
to get at least 50%

I So why report
undecideds in any
case?
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The Undecideds Revisited

I Treating undecideds as 50-50 is not the only choice

I Recall the common claim of an “October surprise”

I Perhaps undecideds are waiting for a last-minute reason to
vote for Obama (or not)

I Model the October surprise as a 70-30 split, or as a 30-70
split, randomly

I Or as a 80-20 or 20-80 split, randomly
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I The October-surprise theory is probably accurate

I Some believe McCain’s support of the stimulus bill was
exactly the October surprise, but in Obama’s favor

I One more simulation, focusing on cell phones

I For a discussion of why cell phones are excluded from surveys:
www.pollster.com/blogs/cell phones and political surv.php

I (While we enjoy teaching closed-form expressions for
uncertainty, simulation is much easier for more realistic
models)
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What is the Effect of Cell Phones?

I A Harris poll (4/08) showed 89% of adults have a cell phone
(up from 77% in 12/06)

I 20% have no land line

I 14% only use a cell phone

I These 14% of voters are not equally distributed by age:

18− 29 49%
30− 39 22%
40− 49 13%
50− 64 11%
65− 6%



I Obama’s supporters are also not distributed equally by age

I An 4/08 Gallup poll found the Obama/McCain supporters
broke

18− 29 57% 37%
30− 49 46% 46%
50− 64 44% 47%
65− 35% 51%



I Let us take as our model the cell phone Harris poll combined
with the actual CNN 2008 election exit poll numbers

Age Fraction Obama McCain Other Cell Only
18− 24 10% 66% 32% 2% 49%
25− 29 8% 66% 31% 3% 49%
30− 39 18% 54% 44% 2% 22%
40− 49 21% 49% 49% 2% 13%
50− 64 27% 50% 49% 1% 11%
65− 16% 45% 53% 2% 6%
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I This simulation suggests (visually) that the uncertainty is not
only somewhat greater than ±3 points, but that it
underestimates Obama’s support (biased) by a point

I We can easily extend (complicate?) the simulation to account
for other realistic polling realities (gender? race?)

I The New York Times “Polling Standards” also includes this
paragraph:

UNDERSTANDING THE MARGIN OF SAMPLING ERROR

The margin of sampling error is the only quantifiable error in a
typical random sample telephone poll, but there are other
errors too. The refusal rate, question order, interviewer
techniques and question wording are all additional sources of
error and bias in polls.

I (No mention of cell phones)
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Example 2: Is It Real?

Study this graphic from the first page of USA Today (10/13/06)



I Quality of USA Today graphics used to be error-prone

I Still tends towards junk art

I Low data-to-ink ratio (Tufte)

I Question here:

Is there any structure apparent from such
compressed data?
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Is the Time-to-Marriage Normal?
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Is the Time-to-Marriage Normal?
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I Look at the numbers from the chart again

Age Range(Months) Fraction
0− 6 5.0%
6− 12 12.2%

12− 36 53.9%
36− 18.9%

I These only add up to 90%!
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I Using the original numbers from the survey cited

Age Range Number Fraction (Chart)
0− 6 181 15.00% (5.0%)
6− 12 147 12.18% (12.2%)

12− 36 651 53.94% (53.9%)
36− 228 18.89% (18.9%)

I The error is entirely in the first interval

I (The original survey gave these percentages — USA Today
just copied the mistake)
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Is the Time-to-Marriage Normal? (corrected data)
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Is the Time-to-Marriage Normal? (corrected data)

Histogram With Normal Fit
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How To Handle the 3rd Interval?
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I The third bin is 4 times wider than the first two

I So split into 4 intervals — divide the count equally
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Is the Time-to-Marriage Uniform?
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Is the Time-to-Marriage Uniform?
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How To Handle the 4th Interval?
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Is the Time-to-Marriage Exponential?
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Is the Time-to-Marriage Exponential?

Histogram With Exponential Fit

interval number

D
en

si
ty

0 2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

0.
20



A New Density Estimator

I Consider a fine histogram that

1. exactly matches the 4 interval proportions
2. minimizes

∫
f ′′(x)2dx (discrete approximation)

3. is as wide as possible and nonnegative (4th bin problem)

I Reference: Scott, D.W. and Scott, W.R. (2008), “Smoothed

Histograms for Frequency Data on Irregular Intervals,” The

American Statistician, 62, 256–261
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Is the Time-to-Marriage Really Bimodal?

I Simulation again

I Start with the original interval counts

181 147 651 228

I Use these empirical proportions to generate another
(multinomial) sample of size 1207

185 161 649 212

I Compute the new histogram and see if it is bimodal

I cf. bootstrapping (repeat 10 times)
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Is the Time-to-Marriage Really Bimodal?
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I Simulation not only useful for usual uncertainty measures

I Also useful for assessing the veracity of (apparent) features in
the data

I Data errors creep in

I How can one be assured no theoretical errors in a simulation
code?

I How can one be assured no bugs in a simulation code?

I Answer: ——-
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Example 3: How To Visualize Uncertainty
in Models with Many Parameters?

I Tables or graphs or ?

I Consider multiple regression (with normal errors)

y = θ0 + θ1x1 + θ2x2 + · · ·+ θpxp + σz

I Collect n instances of this model; least-squares solution is

θ̂ = (X tX )−1X tY

and
variance(θ̂) ≈ σ̂2(X tX )−1

I variance(θ̂) is a matrix: therefore, θ̂k and θ̂` are correlated,
and the diagonal elements contain the variance(θ̂k)
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Estimation of θp ∈ <p

- how to understand uncertainty of θ̂p?

- interpreting individual parameters θ̂
(i)
p

- stability related to n and collinearity

- beyond pairwise correlations, hard to explain/understand

- visualization helpful/better than analytics?

- sensitivity analysis often mentioned

- consider examples from regression
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- parameter-by-parameter confidence intervals

βk ∈ β̂k ± t.975

√
Σ̂kk

- too limited
- changing one variable at a time
- (“the effect of the k-th variable, all other things
being equal . . .”)

- simultaneous confidence region given by (hyper-ellipse)

(β − β̂)t(σ̂2(X tX )−1)−1(β − β̂) ≤ n · p
n − p − 1

fp,n−p−1(0.95)

- example: law school admissions data (n = 15, Efron)
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- look at confidence interval for intercept, β̂0

- look at confidence interval for slope, β̂1

- bivariate confidence interval (rectangle) — too conservative

- should be an ellipse (compare)
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- (see Mathematica animations — prg2.nb)
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- visualization improvement?

- change focus from parameters
- choose a “smooth path” through the confidence

ellipse (rather than on boundary)
- examine the corresponding model visualization

- facilitates understanding the impact of parameter uncertainty
on model and model predictions

- eigenvectors of Σ̂ convenient “smooth path” in <p

- λ1 = 8879.3 and λ2 = 4.4 (data
uncentered/unscaled)

- λ1 = 0.0285 and λ2 = 0.0266 (data
standardized)

- centering and scaling do affect perception (always
center/standardize)
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- for p > 2, eigenvector strategy highly effective

- how to visualize regression when p > 2?

- use alternative parallel plot (for additive model)

- ironically, changes focus back to the variables
- everything standardized, so easy to compare

effects

- look at the stackloss data (3 predictors + int), predicting
stack.loss

- λ2/λ1 = 0.314
- λ3/λ1 = 0.197
- λ4/λ1 = 0.097
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- finally, we will look at the transformed Boston Housing data
(13 predictors + int), predicting ”median house value”
(R2 = 0.77)

- λ2/λ1 = 0.695
- λ3/λ1 = 0.624
- λ4/λ1 = 0.548
- λ5/λ1 = 0.385

-
...

- λ14/λ1 = 0.013

- (Mathematica notebook prg4.nb)
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- hard to look at correlation matrix and “see”
higher-dimensional collinearities

- eigenvectors sorted by the “most active” set of coefficients



Concluding Remarks

I estimates without uncertainty bad practice

I parameter-by-parameter uncertainty misleading (tables)
I visualization helps understand complex parameter interactions

I can visualize the parameters
I or can visualize the resulting model as the parameters are

(smoothly) varied within the hyperellipse

I modern computer simulations (economy, weather,...) have
thousands of parameters — uncertainty poorly understood

I help practicing scientists understand the same lesson; convince
scientists to reserve some computation for uncertainty

I Thank you.

http://www.stat.rice.edu/∼scottdw
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